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Abstract

Data-driven scientific discovery requires the
iterative integration of scientific domain knowl-
edge, statistical expertise, and an understand-
ing of data semantics to make nuanced ana-
lytical decisions, e.g., about which variables,
transformations, and statistical models to con-
sider. LM-based agents equipped with plan-
ning, memory, and code execution capabili-
ties have the potential to support data-driven
science. However, evaluating agents on such
open-ended tasks is challenging due to mul-
tiple valid approaches, partially correct steps,
and different ways to express the same deci-
sions. To address these challenges, we present
BLADE, a benchmark to automatically eval-
uate agents’ multifaceted approaches to open-
ended research questions. BLADE consists
of 12 datasets and research questions drawn
from existing scientific literature, with ground
truth collected from independent analyses by
expert data scientists and researchers. To auto-
matically evaluate agent responses, we devel-
oped corresponding computational methods to
match different representations of analyses to
this ground truth. Though language models pos-
sess considerable world knowledge, our evalu-
ation shows that they are often limited to basic
analyses. However, agents capable of interact-
ing with the underlying data demonstrate im-
proved, but still non-optimal, diversity in their
analytical decision making. Our work enables
the evaluation of agents for data-driven science
and provides researchers deeper insights into
agents’ analysis approaches.

1 Introduction

Scientific data continues to accumulate rapidly,
driven by advancements in scientific instrumen-
tation and the digitization of information. However,
practicing data-driven science (i.e., answering re-
search questions from data) remains difficult, re-
quiring rigorous methodologies, an understanding
of data values and semantics, statistical and do-

main expertise, and critical thinking to validate
hypotheses and draw meaningful and justifiable
conclusions (Jun et al., 2021; Breznau et al., 2022;
Baker, 2016; Collaboration, 2015).

Language model (LM)-based agents (Sumers
et al., 2023; Wu et al., 2023; Wang et al., 2023),
pre-trained on web-scale data and equipped with
memory and tool usage capabilities (Schick et al.,
2023), have the potential to conduct and support
data-driven science. They can reason about and
interact with heterogeneous data representing sub-
jects, objects, and processes of study in the “exter-
nal” world (Majumder et al., 2024b). However, to
facilitate their progress, we need a reliable method
to evaluate and measure their performance.

Recent benchmarks have enabled progress. How-
ever, they focus on either (1) data analysis execu-
tion with straightforward tasks containing a single,
final, easily evaluated answer (e.g., Calculate the
mean and standard deviation of the "Mar.2019" col-
umn (Hu et al., 2024a; Yin et al., 2022; Liu et al.,
2024a)) or (2) tasks for machine learning (ML)
(e.g., improve the accuracy of an ML model (Hong
et al., 2024a; Huang et al., 2023b; Guo et al.,
2024b)). For scientific analyses, these tasks re-
quire limited integration of external knowledge,
limited understanding of data semantics, and lim-
ited grounding in external scientific knowledge. In
addition, these benchmarks evaluate only on single
metrics, such as ML model accuracy or completion
rate. However, in the process of data-driven sci-
entific discovery, the many intermediary decisions
in a multi-step analysis are themselves critical to
identify, meaningfully assess, and differentiate in
order to improve agent performance.

Evaluating agent performance on open-ended
data-driven analyses, especially automatically,
poses specific challenges. First, the natural flex-
ibility in making analysis decisions (Gelman and
Loken, 2014, 2019; Simmons et al., 2011) makes
it difficult to establish a single ground truth that
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Figure 1: Overview of BLADE. We gathered research questions and datasets from existing research papers,
crowd-sourced analysis studies and statistic textbooks as well as analyses from expert annotators (boxes 1-2-3,
and Sec. 3). Given a research question and dataset, LM agents generate a full analysis containing the relevant
conceptual variables, a data transform function, and a statistical modeling function (boxes 1-4-5, and Sec. 4.2).
BLADE automatically evaluates this against the ground truth (box 6 and Sec. 5).

encompasses all justifiable choices. Second, the
heterogeneity of decisions (e.g., regarding specific
hyperparameters of a statistical model, choices of
variables, high-level approaches, etc.) complicates
efforts to decide on the representation and abstrac-
tion of meaningful decisions. Finally, given mul-
tiple valid decisions and approaches, determining
the criteria and method to assess the correctness
and soundness of the agent’s analysis is difficult to
quantify.

In this work, we introduce BLADE, a bench-
mark for the principled evaluation of LM agents
used for data-driven scientific analyses. Given a
research question (e.g., “Are soccer players with a
dark skin tone more likely than those with a light
skin tone to receive red cards from referees?” (Sil-
berzahn et al., 2018; Auspurg and Brüderl, 2021))
and a dataset, BLADE evaluates agents’ ability to
integrate external scientific and statistical knowl-
edge with an understanding of the data to conduct
rigorously justifiable data analyses.

To build BLADE, we collected a set of actual
research questions and datasets (Fig. 1.1) from re-
search papers, crowd-sourced analysis studies, and
statistics textbooks (Sec. 3). Then, inspired by prior
crowd-sourced analysis studies (Silberzahn et al.,
2018; Schweinsberg et al., 2021), we recruited ex-
pert data analysts and collected high-quality data
analyses (Fig. 1.2) through a crowd-sourced anal-

ysis for each research question (i.e., multiple ana-
lysts independently performing a single analysis).
To ensure our benchmark captured a broad variety
of defensible analysis approaches, we asked ana-
lysts to validate alternative decisions from their
peers and LM-generated decisions seeded by an-
alysts’ own decisions. For this process, we also
collected negative examples of "unjustifiable" deci-
sions to use when testing agents’ ability to discern
justifiable ones. We then combined all unique deci-
sions to form the ground truth (Fig. 1.3).

Next, based on studies outlining decision steps
in the data analysis process (Gu et al., 2023a; Liu
et al., 2019, 2020a; Jun et al., 2021), we formu-
lated tasks. These tasks tested the discernment and
formulation of analytical decisions that reflect mul-
tiple levels of abstraction, ranging from executable
code implementing data transformations to higher-
level planning of conceptual variables requiring
external scientific knowledge (Sec. 4).

Finally, given our data and task, we developed
representations and matching criteria for different
types of analysis decisions. We also developed
corresponding computational methods to enable
automatic evaluation of agent responses (Sec. 5).

Overall, BLADE contains 188 multiple choice
and 536 ground truth analysis decisions encompass-
ing multiple justifiable analysis approaches across
12 real-world datasets and research questions. To
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Requirements Data Interpreter MLAgentBench QRData DS-Agent DABench Ours
(Hong et al., 2024b) (Huang et al., 2023a) (Liu et al., 2024b) (Guo et al., 2024b) (Hu et al., 2024b)

Agent abilities tested
(1) comprehend data semantics − − ✔ − − ✔
(2) integrate domain knowledge − − ✗ − − ✔
(3) conduct multi-step reasoning ✔ ✔ − ✔ − ✔
(4) discern justifiable decisions ✗ ✗ ✗ ✗ ✗ ✔
Evaluation characteristics
(5) automatic evaluation ✔ ✔ ✔ ✔ ✔ ✔
(6) decision-based ✗ ✗ ✗ ✗ ✗ ✔
(7) input-flexible decisions ✗ ✗ ✗ ✗ ✗ ✔

Table 1: Comparing BLADE against existing data analysis evaluation datasets and benchmarks for conduct-
ing scientific analyses based on the requirements specified in Section 2. − indicates partial satisfaction (e.g., data
understanding is only on ML model building). See Table 4 for examples from BLADE and recent benchmarks.

illustrate its utility and assess benchmark perfor-
mance, we evaluate different LMs and a standard
ReAct agent (Yao et al., 2023) that interacts with a
sandbox notebook environment (Sec. 6).

In our results (Sec. 7), we find most LMs are
decent at discerning decisions and generating non-
empty executable analyses. However, these analy-
sis are basic and lack diversity. In particular, LM’s
coverage of the ground truth for forming statistical
models with conceptual variables is below 13%,
and for operationalizing variables, it is below 27%
(Fig. 4). The baseline ReAct agent shows a consis-
tent improvement in coverage, though with plenty
of room for improvement.

Our main contributions are: (1) a rigorously
expert-annotated benchmark and the first of its
kind to evaluate agents’ analytical decisions on
open-ended scientific research questions; (2) an
evaluation framework to automatically assess agent
responses on fine-grained aspects of the analysis;
and (3) results on various LMs and a ReAct agent
indicating their current strengths and limitations.

Our work takes the first step in evaluating the
use of agents for open-ended data-driven scientific
discovery. It advances our understanding of agent
capabilities to ultimately collect datasets, generate
hypotheses, conduct analyses, and interpret results
to form valid and justifiable scientific conclusions.
To facilitate further research and development, we
have made our benchmark and evaluation frame-
work publicly available1.

2 Benchmark Requirements

Our benchmark evaluates agents on answering
open-ended data-driven scientific questions, ad-
vancing current efforts that execute analysis code
based on precise single-answer instructions. Exist-

1https://github.com/behavioral-data/BLADE

ing benchmarks are limited in their ability to assess
agent decision-making during analysis and often do
not capture the full scope of their approaches. As
summarized in Table 1, our benchmark addresses
these limitations by focusing on the following key
requirements.

We maintain that the ideal benchmark would
evaluate an agent’s abilities to (1) comprehend
data semantics, understanding the semantic rela-
tionships between variables and what the data rep-
resents relative to the external world, (2) integrate
domain knowledge, i.e., findings from related liter-
ature and an understanding of a “world model”, (3)
conduct multi-step reasoning and planning at differ-
ent levels of abstraction, i.e., high level planning vs.
lower level code execution, given domain knowl-
edge, an understanding of the data, and execution
outputs, and (4) differentiate justifiable decisions
with firm theoretical or statistical support (Simon-
sohn et al., 2020) from unjustifiable ones.

Additionally, the benchmark evaluation should
be (5) automatic, requiring no human intervention,
(6) decision-based, with the ground truth reflecting
the intermediary decisions, and (7) input flexible
decisions, being aware of multiple ways to specify
the same decision.

Requirements 1 through 4 inform our data
collection process (Sec. 3) and task formulation
(Sec. 4). Requirements 5 through 7 inform our eval-
uation procedure (Sec. 5). Ultimately, we assess
whether agents can plan, develop, and execute a
justifiable analysis to answer a real-world research
question.

3 Benchmark Data Collection

We now describe our data collection process for
research questions (RQs), datasets, and ground-
truth analyses.
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RQs and Data. We selected scientific-grade
datasets and RQs directly from scientific publica-
tions, particularly those studied in meta-analysis
papers (Silberzahn et al., 2018; Simonsohn et al.,
2020; Young and Holsteen, 2017) and reproduced
in statistics textbooks (Mcelreath, 2020; Kleiber
and Zeileis, 2008). We chose these sources because
they provide a multitude of complex analyses, and
relevant properties that make analyses non-trivial
and revealing of statistical knowledge. Table 3
summarizes these RQs, datasets, source papers,
and meta-analysis papers. During this process, we
ensured that the datasets were clearly documented
and were sufficiently complex to require non-trivial
analyses, i.e., expert annotators would be required
to clearly distinguish defensible from indefensible
decisions.

Annotation Process. To gather ground truth analy-
ses and ensure the highest quality annotations, we
followed a procedure similar to those used in pre-
vious crowd-sourced analysis studies (Silberzahn
et al., 2018; Schweinsberg et al., 2021). We re-
cruited 11 trained analysis experts and engaged
them in a multi-stage process to ensure quality.
Our experts had a self-reported average of 6 years
of experience, with 6 pursuing or holding a Ph.D.
in a scientific field. Since one of our key contri-
butions is the corpus of ground truth analyses, we
invited our expert annotators to be co-authors of
this paper. See Appendix A.1 for details on analyst
recruitment.

We gave each expert an RQ, dataset, and dataset
description, including details of each column. For
each dataset, experts independently conducted their
analyses, recording all decisions they made. This
naturally resulted in multiple analytical approaches.
To broaden the scope of possible strategies, we
used an LM (GPT-4) to generate additional deci-
sions so that we could capture a broad diversity of
alternative approaches (prompts shown in Fig. 9).
The LM prompt was seeded with existing expert
annotations. In addition, the LM-generated deci-
sions were also used to gather labelled examples of
unjustifiable decisions. Specifically, to ensure high
data quality, experts validated and annotated each
other’s and LM-generated decisions as justified or
unjustified.

Agreement rates among expert annotators were
relatively high: 75% for transformations and 80%
for conceptual variables. In contrast, agreement
on LM-generated decisions was much lower, at

27% for transformations and 13% for conceptual
variables. As a result, fewer than one-third of the
LM-generated transformations and conceptual vari-
ables were unanimously approved, and many of
these lower-agreement items were excluded from
the final ground truth, highlighting areas where LM
agents need improvement.

Finally, we brought the team of experts together
to discuss their decisions, resolve ambiguities, and
establish consensus. Our ground truth thus reflects
alternative approaches validated by multiple ex-
perts. See Appendix A.2 for details of our annota-
tion process.

4 Benchmark Tasks

We want the benchmark tasks to represent decisions
that are vital to the analysis and to evaluate the key
skills needed to conduct data-driven science (i.e.,
requirements 1-4 in Section 2). Below, we intro-
duce the decisions BLADE tests that reflect these
skills before we examine specific BLADE tasks.

4.1 Types of Decisions Tested
Drawing from prior work studying the scientific
analysis process (Gu et al., 2023b; Liu et al., 2019,
2020a), we focus on an agent’s ability to make plan-
ning decisions, i.e., those requiring a process of
reasoning about and then synthesizing the data,
scientific domain, and statistical knowledge. In
addition, we extend prior benchmarks that exclu-
sively focused on the execution of data analysis by
evaluating analysis execution in the context of a
research question and higher-level analysis plans.

Specifically, BLADE measures the following
decisions that encapsulate a data analysis.

1. Formulating Conceptual Variables. This
involves identifying the high-level variables
in an analysis and how they are tied to exter-
nal information, e.g., "Prior literature suggests
player physicality influences the referee’s per-
ception of the player." Here, integrating scien-
tific domain knowledge and conducting multi-
step reasoning (requirements 2 and 3) are at
issue. In the context of a RQ and analysis, this
means to make these decisions, the agent must
be able to identify the constructs that would
serve as the independent variables (IVs), de-
pendent variable (DV), and any control vari-
ables.

2. Executing Data Transformations. Given the
research question and dataset, agents must be
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able to identify the relevant columns and trans-
forms to the data to operationalize concep-
tual variables, e.g., be familiar enough with
the semantics of the data to know that body
mass index (BMI) could be a suitable proxy
for player physicality using the “weight” and
“height” columns.

3. Implementing Statistical Models. These de-
cisions involve implementing the appropriate
statistical model given the conceptual vari-
ables and transformed data to answer the re-
search question. Doing so requires an in-depth
knowledge of both statistical methods and the
underlying conceptual hypothesis (Jun et al.,
2019, 2021).

4.2 Specific Tasks Tested

Task 1: Discern Justifiable Decisions. To evaluate
how well agents can discern justifiable decisions
(requirement 4), BLADE includes the following
Multiple Choice Questions. (MCQ1) Given the re-
search question and the dataset, which conceptual
variable is the most/least justifiable for the analy-
sis? (MCQ2) Given the research question, dataset,
and conceptual variable of interest, which transfor-
mation is the most/least justifiable to operationalize
the variable?

Each multiple choice question includes one cor-
rect and one or more incorrect answers. Justifiable
and unjustifiable decisions were gathered during
expert reviews of each other’s and LM-generated
decisions. A decision was deemed justifiable if all
experts agreed and unjustifiable if the majority con-
sidered it unjustifiable. In addition, for MCQ2, ad-
ditional negative samples were gathered from trans-
formations that were used to derive conceptual vari-
able that differed from the one in the question (i.e.,
easier negative examples). In total, BLADE con-
tains 188 multiple choice questions.

Task 2: Generate an End-to-end Analysis. For
this significantly more complex task, agents need
to generate a complete end-to-end analysis given
a research question and a dataset. Specifically, to
test agent performance on key analysis decisions
(Sec. 4.1), agents are to submit the following arti-
facts (e.g., in Fig. 1.5 and 7), each mapping to one
type of decision.

1. A list of conceptual variables, each with a
natural language description (e.g, player phys-
icality), the variable type (i.e., an independent,

dependent, or control variable), and the name
of the column in the final transformed data
table used in the statistical model.

2. An executable transformation function, which
is given a data table as input and returns a data
table after performing the transformations to
operationalize the conceptual variables.

3. A statistical model function, which takes as
input the transformed data table and returns
the specified statistical model.

5 Flexible Automatic Evaluation

To quantitatively measure the quality of agent-
generated analyses (i.e., the agent-generated arti-
facts) in a way that is automatic, decision-based,
and input flexible (requirements 5-7 in Sec. 2), we
need both concrete representations of analysis de-
cisions and associated matching criteria. We now
discuss the representation and matching procedure
for each artifact in an agent’s submission.

Matching Conceptual Variables. Because con-
ceptual variables capture high-level constructs, two
similarly specified constructs (i.e, player physi-
cality and how physically imposing the player is)
should have the same meaning as long as they have
the same variable type (i.e., IV, DV, or Control). To
match these specifications, we employed an LM
(GPT-4o) to determine the semantic equivalence
between two conceptual variables. We followed
a procedure similar to (Liang et al., 2023) which
was validated on semantically matching academic
reviews (prompt in Fig. 11). Appendix A.4.2 con-
tains further details.

Matching Data Transformations. Since there are
many ways to express data analyses in code, even
ways that could be perfectly equivalent, we require
a representation that maps equivalent transforma-
tions to a single representation (i.e., requirement
7 – input flexible evaluation). Taking the code in
Figure 2 as an example, the ordering of the trans-
forms 1 - 2 - 3 or 2 - 1 - 3 are functionally
equivalent with respect to the final product of the
computation (i.e., as long as 1 and 2 come be-
fore 3 ). In addition, transformations that result in
the exact same output column values (with a small
margin of error for floating point) should be consid-
ered equivalent transformations. Likewise, getting
a certain column’s values correct should mean that
all relevant prior steps were correct and that deci-
sions for each relevant prior transformation were
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Figure 2: To allow flexible and fine-grained matching, we represent transforms in code (left) as a column data flow
graph G (right). The nodes in blue are column indicator nodes P , and the nodes in orange are transform nodes T .
Details of the data flow graph formalization are in Appendix A.3

.

correct. For example, if a submission missed 6
but still correctly calculated the “rdcards” after the
groupby, then the agent still correctly performed
steps 1 - 5 , deserving significant partial credit.
In complex tasks such as scientific data analysis,
such partial credit enables meaningful differentia-
tion of model performance and progress.

To capture the aforementioned nuances, we
developed a representation for data transforma-
tions using a data flow graph (Kavi et al., 1986)
(Fig. 2 right). These graphs are useful because any
series of transformations in the order of a topologi-
cal sort (Manber, 1989) on the graph leads to the
same result. In addition, our graph captures data
flow at the column-level (i.e., all cell values in a sin-
gle column) to enable subsequent matching at the
granularity of columns. In doing so, we allow for
matching on transforms that require and affect only
a subset of columns in a data table (e.g., in Fig. 2,
getting 1 correct is independent of getting 2
correct). Appendix A.3 describes our data flow
graph formalism in greater detail.

In addition, the transforms (i.e., orange nodes
in Fig. 2) in the data flow graph represent a dis-
crete data transformation decision that was made in
wrangling the data (requirement 6 – decision-based
evaluation). Specifically, each transform is defined
by a fixed set of transform verbs (Table 6) that
are: based on existing data wrangling libraries (i.e.,
Arquero2 and Vega (Satyanarayan et al., 2016)),
expandable, and validated to cover every analysis
decision in our benchmark.

2https://idl.uw.edu/arquero/

To match transforms in BLADE, we applied
an LM (GPT-4o) to convert the transformation
function in an agent’s submission to the individ-
ual transform units (prompt in Fig. 12 and 13). We
then constructed the agent’s transformation data
flow graph and matched it with the ground truth.
We match based on both the column values that
are the output of any discrete transformation and
a fuzzier graph isomorphism matching that deter-
mines whether approximately the same steps were
applied. Appendix A.4.1 describes the matching
procedures in detail.

Matching Statistical Models. The implementa-
tion of statistical models and relevant parameters
could be evaluated in multiple different ways (i.e.,
code, natural language, or mathematical formulas
(Jun et al., 2021; McElreath, 2018)). To prioritize
the underexplored planning aspects of statistical
modeling (Gu et al., 2023b), we focus on being
able to select the right model and conceptual vari-
ables. In principle, this representation could be
extended to include code, hyperparameters, and
more. Specifically, we first used an LM (GPT-4o)
prompt (Fig. 14) to convert the modeling function
into a natural language specification of the model
and the columns in the transformed data table that
are used in modeling. Next, using another LM
(GPT-4o) prompt, we compared this output with
the ground truth natural language specifications of
the model (prompt in Fig. 15) and associated con-
ceptual variables based on semantic equivalence.
See Appendix A.4.3 for additional details.
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Evaluation of LM Evaluation Modules. To val-
idate our LM-based evaluation modules, two au-
thors independently reviewed a sample of 615 LM-
generated outputs across multiple datasets. After
an initial round of review and resolution of any
disagreements, the modules achieved the following
correctness rates: 93% for matching conceptual
variables, 97% for translating transform code into
transform units, 97% for converting modeling code
into a natural language specification, and 92% for
matching statistical models. These results were
deemed sufficient for our evaluation purposes.

6 Experiments

To establish a baseline and evaluate the perfor-
mance of LM-based agents on BLADE, we se-
lected the following models: GPT-3.5 Turbo,
GPT-4o (OpenAI, 2024), Gemini 1.5 Pro (Pichai,
2024), and Claude 3.5 Sonnet (Anthropic, 2024)
to represent closed-source general-purpose LMs;
Llama3 8B, Llama3 70B (Meta, 2024), and Mixtral-
8x22B (Mistral, 2024) for open-source LMs; and
CodeLlama Instruct 7B (Rozière et al., 2023) and
DeepSeek-Coder Instruct 6.7B (Guo et al., 2024a)
for coding-specific LMs.

Experiment Settings. For the multiple choice
questions (Sec. 4.2, Task 1) we evaluate each LM
with a temperature of 0. To generate an end-to-
end analysis (Sec. 4.2, Task 2), we evaluate LMs
in one turn with a one-shot example (prompt in
Fig. 16). In addition, we develop an agent (also
with an example demonstration), based on the Re-
Act framework (Yao et al., 2023), that interacts with
a computational notebook environment containing
the data, reflects on observations from executing
the code, and generates next-step actions. We eval-
uate the ReAct agent on Mixtral-8x22b, GPT-3.5
Turbo, GPT-4o, Gemini 1.5 Pro, and Claude 3.5
Sonnet. Appendix A.5 contains additional details
on the setup of the agent and the choice of LMs.

For each LM and setting (i.e., one turn vs. ReAct
agent), to encourage diversity we set the temper-
ature to 0.8 and record a total of 40 runs for the
one-turn setting and 20 runs for the agent setting
to consider for computational budget. For all LMs
used to facilitate the evaluation (i.e., conversion and
semantic matching), we use GPT-4o with a temper-
ature of 0. Appendix A.6 includes all prompts for
the baselines and LM-aided evaluation.

Evaluation Metrics. For the multiple choice tasks
(Task 1), we measure agents on accuracy. For the

generation tasks (Task 2), to measure an agent’s
ability to both generate justifiable analyses and cap-
ture the breadth of justifiable approaches, we calcu-
late an adapted F1-score for each type of analysis
decision (conceptual variables, transformation, and
statistical model). The F1-score takes the harmonic
mean of average precision across runs and cover-
age@k. The former quantifies how well an agent’s
response matched with the ground truth while the
latter evaluates how comprehensive agents are in
generating justifiable alternative analyses. In our
experiments, we report average precision across all
runs and coverage for k = 10 runs. Appendix A.7
contains the full details of our evaluation metrics.

7 Results

We report the performance of LMs on MCQs (Task
1) in Figure 3 and the results of LMs and our ReAct
agent for analysis generation (Task 2) in Table 2
and Figure 4. Here, we summarize our main find-
ings.

Figure 3: Accuracy scores and 95% confidence intervals
for different models on BLADE’s 188 MCQs (168 for
transformations and 20 for conceptual variables).

Models F1 (95% CI)
One-turn Setting
CodeLlama 7B 16.8 (15.2, 18.5)
Deepseek-Coder 6.7B 33.9 (32.2, 35.4)
Llama3 8B 29.6 (27.7, 31.5)
Llama3 70B 36.3 (34.7, 37.8)
Mixtral-8x22B 40.1 (38.0, 42.1)
GPT-3.5 Turbo 30.5 (28.7, 32.2)
GPT-4o 41.7 (40.2, 43.2)
Gemini 1.5 Pro 41.1 (39.6, 42.5)
Claude 3.5 Sonnet 43.9 (42.6, 44.9)
Agent Setting
Mixtral-8x22B 40.8 (38.2, 42.9)
GPT-3.5 Turbo 37.2 (34.7, 39.7)
GPT-4o 44.8 (43.0, 46.3)
Gemini 1.5 Pro 40.1 (38.3, 41.5)
Claude 3.5 Sonnet 43.1 (41.4, 44.8)

Table 2: We report the decision-type weighted F1-score
on analysis generation based on average precision and
coverage@10. Appendix A.7 has the calculation details.
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Figure 4: Average precision (top row) and coverage@10 (bottom row) percentages averaged across datasets in
BLADE. All runs were included in the results. Run errors default to a hit rate of 0 and are counted in the coverage
calculation (i.e., treated as a run that generated nothing). Error bars represent bootstrapped 95% confidence intervals.

LMs have acceptable world knowledge. We
find that LMs can identify some relevant concep-
tual variables based on the research question and
dataset (i.e., a reasonable precision and coverage
for conceptual variables). In BLADE, many rele-
vant conceptual variables are possibly hinted at in
the research question and available data columns.
Although our setting is realistic and common, fu-
ture work could explore how LM agents perform
in generating hypotheses and identifying relevant
data without such context (Majumder et al., 2024b).
In addition, we find that the best general LMs
(i.e., Gemini-1.5 Pro, Mixtral-8x22b, Claude-3.5-
Sonnet and GPT-4o) perform well on the MCQs
(Fig. 3). They can discern the obvious transforma-
tions for a given conceptual variable. In contrast,
code-specific LMs, like CodeLlama and DeepSeek-
Coder, struggle to identify the correct decision.

Most LMs can generate non-empty executable
analyses. For generating an analysis, we find that
most large LMs can generate a non-empty exe-
cutable analysis over 60% of the time, with GPT-
4o being the best at 96% (Fig. 5). Among the
open-source models, Mixtral-8x22b performs best,
generating an executable analysis 73% of the time
and DeepSeek-Coder also does surprisingly well
at 65%. In a manual inspection of non-executable
analyses, we notice issues with respect to halluci-
nating data attributes. Taking one of DeepSeek-
Coder’s submissions to the soccer dataset as an
example, we observe plausible looking code, but it
hallucinates the “RefCountry” column, which does

not actually appear in the data table (Figure 21-7).

LMs struggle to specify statistical models and
concretely operationalize conceptual variables.
LMs perform relatively poorly in forming statistical
models with the right conceptual variables (preci-
sion below 35%) and operationalizing the variables
(precision below 60%). In addition, LMs perform
even worse in terms of coverage for forming sta-
tistical models with conceptual variables (cover-
age@10 below 13% across) and operationalizing
the variables (coverage@10 below 27%). This in-
dicates there is room for improvement not only in
generating valid analyses, but also generating more
complex and diverse analyses that might require
additional reasoning beyond the basic steps.

LMs are limited to forming basic analyses. Fig-
ure 5 also shows that many of the LM’s submis-
sions contain empty transform code, especially for
GPT-3.5 Turbo and Gemini 1.5 Pro. In addition, we
observe low coverage of the ground truth examples
(Fig. 4 bottom row), especially with respect to data
transformations and specific model specifications.
Through qualitatively reviewing a random sample
of LM-generated analyses, we find that LMs are
often confined to performing a basic analysis that
can yield decent precision (i.e., matching on the
basic decisions) but poor coverage across runs (see
Appendix A.8 for examples).

Agents can improve the diversity of analyses.
Comparing the one-turn and agent settings, LMs
consistently had higher coverage when given the
ability to iteratively explore the data. In addition,
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Figure 5: Characterization of run results for analysis generation for each LM and ReAct agent variants. "No
execution errors" indicates executable transform code, "Empty transform" means no transformations were provided,
"Execution errors" means the code resulted in errors, and "No generation" indicates the result could not be parsed.

Figure 6: BLADE Performance vs. HumanEval Performance. We compare BLADE evaluation metrics against
reported Pass@1 on HumanEval (Chen et al., 2021) for all LMs in our experiments.

ReAct agents perform the best overall on coverage
for data transformations and statistical modeling,
which often require a more detailed understanding
of data semantics (Fig. 4 bottom row). Future work
can explore how augmenting agents with external
knowledge (e.g., from academic papers) can further
improve their performance.

Stronger performance on code generation does
not translate directly to BLADE. When compar-
ing our results in analysis generation with the re-
sults of the HumanEval coding benchmark (Fig. 6),
we found that most metrics showed a positive cor-
relation, indicating that higher HumanEval perfor-
mance is broadly correlated with higher BLADE
performance. However, coverage measures (Fig. 6,
bottom row) had a weaker correlation compared to
precision (Fig. 6, top row). This suggests that while
current training methods, such as Reinforcement
Learning from Human Feedback (RLHF) and in-

struction tuning, optimize for getting one solution
right, they may not effectively generate multiple,
diverse solutions, a phenomenon also observed in
other contexts (Li et al., 2024c).

We also highlight that Gemini 1.5 Pro con-
sistently performed better on precision than its
HumanEval performance would suggest, while
Mixtral-8x22B excelled in both precision and cov-
erage for conceptual variables and data transfor-
mations. In contrast, CodeLlama consistently per-
formed worse on BLADE than HumanEval. Given
that Gemini 1.5 Pro and Mixtral-8x22B are general-
purpose Mixture-of-Experts models, our analysis
highlights BLADE as a challenging benchmark that
assesses more than just code generation proficiency.
Our benchmark results identify specific areas for
improvement, such as enhancing the complexity
and diversity of analyses or generating reasonable
statistical models.
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8 Related Work

Our work broadly relates to research on agent
benchmarks for data science, data analysis, and
coding, as well as LM agents for use in science.

Benchmarks for Data Science. Many bench-
marks, such as TabpilotCrossing (Li et al., 2024b),
ARCADE (Yin et al., 2022), and some in Table 1,
assess agents’ abilities to execute data science tasks.
These benchmarks are limited in the complex multi-
step reasoning, decision making, and integration of
external knowledge that is necessary in scientific
analyses. Another line of work evaluates agents
on machine learning and data science engineering
tasks where the goal is to improve a specific final
metric (Huang et al., 2023b; Hong et al., 2024a),
but these do not evaluate intermediate decisions
(examples in Table 4). Still, other work aims to
assess agents’ causal (Jin et al., 2023) and quantita-
tive reasoning abilities (Liu et al., 2024a), but these
tasks often lack data or involve single-line, closed-
ended solutions, missing the flexibility needed for
open-ended scientific analyses. Meanwhile, Dis-
coveryBench (Majumder et al., 2024a), a concur-
rent work, evaluates agents on generating a data-
driven hypothesis (e.g., Per unit increased ease of
immigration reduces 0.1059 unit of the share of
offshore employment) given a question (e.g., How
does per unit increased ease of immigration impact
the share of offshore employment?). In contrast,
BLADE incorporates key aspects of scientific anal-
yses, particularly focusing on the diverse decisions
involved in open-ended scientific analysis, which
previous evaluations of LM-based agents have not
been able to capture.

Agents for Science. Advancements in LMs have
ignited research interest in applying agents to au-
tomate scientific discovery (Liang et al., 2023;
Romera-Paredes et al., 2023; Shojaee et al., 2024;
Kramer et al., 2023). ChemCrow (Bran et al., 2023)
and Coscientists (Boiko et al., 2023) are domain-
specific agents for chemistry research. DataVoy-
ager (Majumder et al., 2024b) is a proof-of-concept
system that performs knowledge-driven hypothe-
sis search and data-driven scientific analyses. Our
work seeks to provide a thorough automated evalua-
tion of agents for science analyses across domains.

9 Limitations

Our work is not without limitations. First,
BLADE does not evaluate an agent’s ability to

interpret the results of data analyses as part of the
end-to-end data analysis process. Understanding
and interpreting model results is vital but can be
difficult to capture cleanly since it may require ana-
lysts’ subjective interpretation of the problem with
respect to model results. We leave this important
dimension for future work.

In addition, though our work elucidates the de-
cisions an agent may make, we do not explicitly
evaluate the exploratory parts of an analysis. Fur-
ther, we assume that the dataset is contained in
a single, potentially extremely large table. This
may not be common of all research datasets, but
we believe this factor does not significantly reduce
the scope of BLADE since joining tables to en-
able downstream analyses is a task that LMs al-
ready commonly perform (Liu et al., 2023; Li et al.,
2024a; Pourreza and Rafiei, 2023).

Finally, some components of our evaluation rely
on LMs (e.g., conversion of code to discrete trans-
forms, semantically matching model, and concep-
tual variable), which are known to hallucinate.
Therefore, we made multiple efforts to validate
each component and do not think that hallucination
significantly impacts our ability to effectively and
automatically evaluate agents. We also open source
these evaluation modules so that researchers can
build upon them to improve our evaluation.

10 Conclusion

We introduce BLADE, a benchmark for stimulat-
ing and evaluating the development of LM agents
for data-driven scientific tasks. We collected a
dataset of research questions and data tables and
gathered ground truth analyses from expert anno-
tators. To support an automatic, decision-based,
and input-flexible evaluation, we devised represen-
tations of core analysis decisions and developed
corresponding matching algorithms. Although cur-
rent generations of LMs can generate some analy-
ses matching the ground truth sometimes, we find
that these analyses are limited in complexity and
lack diversity.
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A Appendix

A.1 Data Collection Recruitment

Data analysts were recruited through open calls
on social media platforms and personal connec-
tions. Of the analysts interested, a subset was
selected based on their CVs reflecting education,
training, and practices in statistical foundations and
data analysis. The selected analysts provided suffi-
ciently detailed analysis reports in a screening task
and proceeded to the formal annotation phase. A
total of 11 analysts participated in the final annota-
tion (see Table 5 for annotator information).

The participating analysts self-reported an aver-
age of 6 years of experience in data analysis (range:
4-8 years), with 4 analysts performing data analysis
on a daily basis and 7 engaging in it a few times
a week. The team included 6 people holding or
pursuing Ph.D. degree in Statistics or a related field
(Ph. D. in Biostatistics, Ph.D. in Biomedical and
Health Informatics, Ph.D. in Measurement, Eval-
uation, & Research Methodology), the rest held
at least 1 Master’s degree in a related field. The
analysts’ occupations varied, 7 were graduate stu-
dents, 3 held data scientist positions in the finance
and technology industries, and 1 was a quantitative
researcher in finance.

By assembling a team of analysts with diverse
backgrounds and a broad range of expertise in sta-
tistical analysis methods, we ensure that the ground
truth dataset is constructed using a comprehensive
set of methods. At least half (n=5) of the analysts
self-reported being familiar “to a high extent" or
“to a very high extent" with common classes of
analysis methods including descriptive statistics,
inferential statistics, hypothesis testing, estimation,
correlation, and regression.

A.2 Data Collection Procedure

While the analysts were free to conduct the analysis
in their preferred computational environment, we
took several additional steps to ensure the quality
of our ground truth.

To ensure consistency of annotations, we built
a pipeline with structured training and annotation
procedure aimed at ensuring well-prepared ana-
lysts, consistent and reliable analysis decision spec-
ifications, and a diverse range of justifiable models
and analysis approaches. These decisions cover
conceptual variable formulation, executing data
transformations to operationalize the variables, and
implementing statistical models (Sec. 4.1).

To streamline the annotation process and reduce
some of the cognitive load in specification, we de-
veloped a customized annotation interface that sup-
ports structured inputs and sanity checks.

We started with a training and familiarization
procedure for the analysts. The process involved
on-boarding and training to establish a clear mutual
understanding of the expected level of analysis and
the format of decision inputs to be recorded in the
ground truth. We provided analysts with video and
text tutorials, accompanied by a toy example imple-
mented within the system. Multiple ad hoc meet-
ings and Q&A sessions were also held to further
clarify the process and address any issues. Analysts
were introduced to example crowd-sourced analy-
ses (Schweinsberg et al., 2021; Silberzahn et al.,
2018) to align their mental models with justifiable
alternative decisions and the model quality level.

Collaborative efforts were encouraged in curat-
ing and shaping the datasets, research questions,
and meta-information. In the review and revision
phase, we shared input from other annotators and
presented LM-generated examples (n ≈ 40 per
annotator, per dataset) for analysts to label as cor-
rect or incorrect. This process helped identify gaps,
promote diversity, and encourage the incorporation
of additional justifiable decisions. Analysts labeled
the generated examples as justifiable or not jus-
tifiable, drawing inspiration from their peers and
LM-generated outputs. The diversity in familiarity
with various analysis methods among the analysts
complemented each other, resulting in a more ro-
bust set of annotations.

At the end of the annotation, we collected 118
conceptual variable decisions, 246 discrete trans-
form decisions, and 172 modeling decisions (i.e.,
choice of statistical model and model formula).

A.3 Analysis Decision Representations
In this section, we formally describe the represen-
tation of different analysis decisions as described
in Section 5. These representations capture all al-
ternative approaches in our ground truth and are
matched with an agent’s generated analysis arti-
facts (Sec. 4.2).

Data Transformations. Formally, a transform data
flow graph is a bipartite graph with two types of
nodes: transform nodes and column pointer nodes.

G = (T ∪ P, E) (1)

where T = {t1, t2, . . .} is the set of transforms.
P = {p1, p2, . . .} is the set of column pointers,
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and the set of edges is denoted by:

E ⊆ (T × P ) ∪ (P × T ) (2)

Each transform t represents one unit of transfor-
mation and is defined by a fixed set of transform
verbs V (Table 6). This set of transform verbs
is based on existing data wrangling libraries (arq,
2021; Satyanarayan et al., 2016), were validated
to cover every analysis decision in our benchmark,
and represent a discrete data transformation deci-
sion that was made in wrangling the data.

Given our graph, we ultimately want to match
based on the column values as a result of any se-
ries of transformations. Thus, each column pointer
holds the column values and facilitates the flow of
column values from transform to transform. We
denote the column vector value at a column pointer
node p as vp and S as the set of all column values
associated with G.

S = {vp | p ∈ P} (3)

The set of input column pointers to a transform
t and the output column pointers from a transform
t are defined by I(t) and O(t):

I(t) = {p ∈ P | (p, t) ∈ E}, (4)

O(t) = {p ∈ P | (t, p) ∈ E}. (5)

The exact transform performed dictates I(t) and
O(t). Specifically, O(t) reflects only the columns
that are changed by t and I(t) are the columns that
are necessary to compute the output O(t) .

Our transform data flow graph satisfies the fol-
lowing properties:

| I(t)| > 0

|O(t)| ≥ 1

|I(p)| = 1 except for original columns

So far, a single data flow graph G, represents a
unique series of transformations. To account for
all alternative transformation choices (e.g., an al-
ternative in which the filter step 3 in Fig. 2 is
skipped), we define G = {G1, G2, . . . , Gn} to be
the set representing all unique series of transfor-
mations for an analysis. Note that any two graphs
Gi = (Ti, Ei) and Gj = (Tj , Ej) may contain the
same transformation (e.g., two graphs can contain
the same derive rater average transform 1 ) and
so Ti ∩ Tj ̸= ∅.

Finally, to keep track of all transformations
across all justifiable alternatives, we define T
and S to be the set of all transformations and
columns values, respectively, across all data flow
graphs. Any agent benchmark submission will be
matched against these ground-truth representations
(described in Appendix A.4.1).

T =

n⋃
i=1

Ti S =

n⋃
i=1

Si (6)

Conceptual Variables. A conceptual variable
c ∈ C is a triplet (cdesc, ctype, Ccols) where cdesc
is a natural language description of the concep-
tual variable, ctype ∈ {IV, DV, Control} is the vari-
able type, and Ccols ⊆ S is the set of column
vectors that operationalize c. Here, C denotes the
set of conceptual variables across all alternative
approaches.

Statistical Models. A statistical model m ∈ M is
a tuple (mdesc,Mcols) where mdesc is the natural
language description of the statistical model and
Mcols ⊆ Ccols is a set of column vectors associated
with the model which are also associated with a
conceptual variable. In addition, Mcols should be
associated with only one series of transformations
or one data flow graph, that is:

∃Si ∈ {S1, S2, . . . , Sn} | Mcols ⊆ Si (7)

From Mcols, we can also derive the associated con-
ceptual variables Cm ⊆ C in a model.

Cm = {ci | Ccols,i ∩Mcols ̸= ∅} (8)

In addition, for each statistical model m, there is
one associated variable that is a DV, at least one
associated variable that is an IV and 0 or more
Control variables. M denotes the set of statistical
models across all alternative approaches.

A.4 Decision Matching Procedure
With an understanding of the representations of
different analysis decisions, we now describe a
procedure to match an agent-generated analysis to
the ground truth.

Given the agent submission artifacts (Fig. 7), we
first apply LMs to handle the conversion of gener-
ated artifacts into our ground truth representation
format. Specifically, we use GPT-4 to perform
two tasks: convert the transform function into indi-
vidual transform units, and translate the modeling
function into a statistical model specification (e.g.,
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Generated Analysis

{ 
    "cvars": { 
        "ivs": [ 
            {"description": "Skin tone of the soccer player", "columns": ["SkinTone"]} 
        ], 
        "dv": { 
            "description": "Number of red cards received by the soccer player",

            "columns": ["redCards"] 
        }, 
        "controls": [ 
            { 
                "description": "Number of games played by the player-referee dyad", 
                "is_moderator": false, 
                "moderator_on": "", 
                "columns": ["games"] 
            }, 
            ... 
        ] 
    },
 

    "transform_code": ,

    "model_code": 
}

TRANSFORM CODE
MODEL CODE 

def transform(df: pd.DataFrame) -> pd.DataFrame: 
    # Compute the average skin tone rating 
    df['SkinTone'] = (df['rater1'] + df['rater2']) / 2  

    # Drop the rows with missing values in the necessary columns 
    df = df.dropna(subset=['SkinTone', 'redCards', 'games', 'meanIAT', 'meanExp'])  

    return df

def model(df: pd.DataFrame) -> Any: 
    # Define independent variables, control variables, and the dependent variable 
    X = df[['SkinTone', 'games', 'meanIAT', 'meanExp']] 
    y = df['redCards']  

    # Add a constant to the model (intercept) 
    X = sm.add_constant(X)  

    # Define and fit the model 
    model = sm.OLS(y, X).fit()  

    # Return the summary of the model 
    return model.summary()

DATA TRANSFORM CODE

STATISTICAL MODELING CODE

Figure 7: Example of the full analysis submission to BLADE.

derive,  input: , , output: 'rater1' 'rater2' 'skin_tone'

filter,  input: , output: none'skin_tone'

derive , 'rater1' 'rater2'

filter 'skin_tone'

def transform

return

 (df: pd.DataFrame)  pd.DataFrame:

    df[ ]  df[[ , 


] ].mean(axis 1)

    df.dropna(subset [ ], inplace True)

     df

->
=

=
= =

'skin_tone' 'rater1'
                          'rater2'

'skin_tone'

Figure 8: Given a transform function from a graph (top),
we first use an LM (GPT-4o) to convert the transform
into individual transform units with verb and column
specifications (middle). Using this information, we then
derive the column data flow graph G (bottom).

linear regression) along with the columns used in
the model (Fig. 8).

Next, we describe the procedure to match a given
analysis to the ground truth. Specifically, given
the ground truth G, T , C, and M , we describe
matching a single analysis containing G′, T ′, C ′,
and M ′.

A.4.1 Matching Transforms
Data transformations are inherently open-ended
with multiple valid approaches and free-form re-
sponses. Our goal is to capture how well agents
perform in the underlying data analysis decisions.
Therefore, we define multiple approaches to cap-

ture different levels of performance (i.e., getting
the exact column vector vs. rough same steps) in
how well a given analysis matches with the deci-
sions in the ground truth: value matching and graph
matching.

In both matching schemes, we determine
whether a match occurs (i.e., based on matching
column values or the graph structure based on the
transform specification) and match all upstream
transformations based on the data flow graph G.

Here, in order to evaluate the quality of a se-
ries of transform T ′ in G′, we attempt to identify
ground truth transforms t ∈ T associated with G
that matches with t′ ∈ T ′, that is, Match(t) = 1
and Match(t′) = 1.

To match all transforms T in all specified alter-
natives with T ′, as the transforms are situated in the
graphs, we perform all pairwise matching between
G ∈ G and G′.

Value Matching. In value matching, we want to
match two series of transformations if they result
in the same column value.

Given S and S′ denoting the sets of column vec-
tors associated with G and G′, if vp ∈ S = vp′ ∈
S′ (i.e., all cell values are equal when comparing
two column vectors at column pointer nodes p and
p′), then this means that the series of transforma-
tions that resulted in vp and vp′ are equivalent.
Therefore, all parents transforms of p in G and p′

in G′ should be matched.

Let I(p)+ denote the set of transforms in the
transitive closure of p and its ancestors: I(p) =
{t ∈ T | T ∈ I(p) or T ∈ I(I(I(p))) . . .}. If
vp = vp′ , then I(p) ⊆ T is matched and I(p′) ⊆
T ′ are matched.
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Match(t) = 1 ∀t ∈ I(p)+ and

Match(t′) = 1 ∀t ∈ I(p′)+

While it may be the case that there are other col-
umn values involved in O(t) which may differ, we
at least know for sure that two series of transforma-
tions produced the same column value. In addition,
because the definition of each t is set to only in-
clude the affected columns, we find that the match
of values in two pairs of columns is a sufficient
criterion for equivalence.

Fuzzy Graph Isomorphism Matching. Value
matching may be considered to be too strict, es-
pecially when small changes in the numerical pa-
rameters of a transform can lead to different col-
umn values (e.g., in Fig. 2, filter on rpg > 0.5 vs.
rpg > 0.45). To allow greater flexibility in the
matching, we introduce fuzzy graph matching. In
graph matching, we match based on the transform
verbs and column specifications rather than the ex-
act column values (e.g., choosing to filter on rpg

and r_avg after steps 1 and 2 ). More specif-
ically, if two series transforms shared the same
high-level definition in which transforms are used
in a similar way defined by the transform verb and
parameter columns and dataflow, then they should
be equivalent.

To accomplish this, we add a node label map-
ping L : T → V × Pn mapping the transform to
its associated transform verb and column pointer
parameters (e.g., step 3 in Fig. 2 would have
the node label (filter, {prpg, pr_avg}) where prpg is
the column node associated with the rpg column
and pr_avg is the column node associated with the
r_avg column). Given this definition, if a subgraph
is equivalent to another subgraph, then this means
they represent the same choices of transforms (at a
higher-level of abstraction relative to Value Match-
ing).

More formally, let H(t) denote the subgraph
induced by the transitive closure of t and its par-
ents. H(t) captures both the transform nodes and
the relevant column pointer nodes. If H(t) is iso-
morphic to H(t′), including the node labels added
from L and L′, then all t in H(t) and t in H(t′) are
matched.

Match(t) = 1 ∀t in the graph H(t)

Match(t′) = 1 ∀t in the graph H(t′)

A.4.2 Matching Conceptual Variables
Given c ∈ C and c′ ∈ C ′, c and c′ are equivalent
if ctype = c′type and cdesc and c′desc are semanti-
cally equivalent. For practical purposes, we use
a language model to determine semantic equiva-
lence. Specifically, we use GPT-4o following Liang
et al.’s (2023) prompting approach.

We input JSON-formatted conceptual variable
specifications for {cdesc | c ∈ C} and {cdesc | c ∈
C ′}. The LM then generates a JSON output where
containing the pair of matching point IDs, and an
associated similarity value providing the explana-
tion for the match (see Fig. 11 for the prompt).

A.4.3 Matching Statistical Models
Given m ∈ M and m′ ∈ M ′, we define two lev-
els of matching: semantic and conceptual model-
based matching. First, m and m′ are semantically
matched if mdesc and m′

desc are semantically equiv-
alent following the same matching procedure for
conceptual variables (see Fig. 15 for the prompt).
This represents a coarse level of matching.

As determining the choice of a justifiable model
involves including the right conceptual variables in
the model, we then perform matching based on the
conceptual variables (Appendix. A.4.2) associated
with the model.

A.5 Baseline ReAct Agent Details
The baseline framework is an ReAct agent
with [Thought], [Action], and [Observation]
stages before a final [Finish] stage. The ini-
tial [Thought] stage integrates the current con-
text (i.e., latest observation) and the prior outputs
(i.e., history of thoughts, actions, and observations)
to formulate the next step action. Next, with the
[Action] tag, the LM calls the underlying note-
book and executes a new cell with the new LM-
generated code. The [Observation] then comes
from the notebook environment and is the string
representation of the last-line output in the code
following Yin et al., 2022. This cycle repeats until
the LM decides to output the final analysis with the
[Finish] tag. The prompt for the agent includes
one example of a ReAct trajectory ([Thought] -
> [Action] -> [Observation]) that iteratively
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explores the data. See Figure 18 for the prompt
template.

The notebook sandbox environment uses Python
3.10 with the following imports:

import pandas as pd
import sklearn
import scipy
import statsmodels.api as sm
import statsmodels.formula.api as smf
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

These imports were determined during develop-
ment such that the code generations do not involve
any import errors on the main coding libraries.

Compared to the one-turn setting, the ReAct
agent can explore the data more closely. In our
experiments, we allow the agent to perform up
to 10 steps, interacting with the environment with
the full context of prior actions and observations.
Based on preliminary experiments, we determined
that the ReAct agent needed LMs with at least
an 8k context window to handle multiple turns of
code execution outputs. Because of this, we per-
formed experiments with the ReAct framework on
the following LMs: Mixtral-8x22b, GPT-3.5 Turbo,
GPT-4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet.

A.6 Prompt Templates

The following figures (Figures 9-19) show the vari-
ous prompt templates used in the construction and
evaluation of BLADE. The prompts in Figure 9
and Figure 10 are used to elicit alternative con-
ceptual variables and data transformations in the
benchmark data collection (Sec. 3).

The next set of prompts are used in the automatic
evaluation of BLADE(Figures 11-16). Figure 11
shows the prompt to semantically match conceptual
variables. Figure 12 and 13 show the prompt for
converting the agent’s transformation function sub-
mission (e.g., Fig. 7). Figure 14 shows the prompt
to convert the statistical modeling function into a
natural language specification of the model and the
columns in the transformed data table that are used
in modeling. Finally, Figure 15 shows the prompt
used to semantically match statistical models.

We also include the prompts for our evaluation
tasks. Figure 16 shows the instructions to gener-
ate the entire analysis, while Figure 18 shows our
implementation of the ReAct framework, which
guides an AI assistant through reasoning and ac-
tion steps for data analysis tasks. Figure 19 gives
an example of our MCQ prompt.

Most of these prompts utilize a JSON represen-
tation of Pydantic objects for standardized format-
ting, leveraging Langchain’s Pydantic parser3. Ad-
ditionally, the schema of the dataset is represented
as a JSON object, generated using the data sum-
marizer from Dibia, 2023. Figure 13 provides a
detailed description of the transformation API used
in the prompt for Figure 12, specifying the avail-
able transformation verbs and their corresponding
input/output mappings. Figure 17 provides the one-
shot example to guide the LM in generating an
analysis (i.e,. the prompt in Fig. 16).

A.7 Evaluation Metrics Details

Average Precision. Average precision is calcu-
lated as the mean of the precision scores across all
individual runs. For a decision type (i.e., concep-
tual variables, transformations, statistical model-
ing) and a given set of agent-submitted decisions
for runs {R1, R2, . . . , Rn} with a corresponding
ground truth set G, the precision for each run Ri is
calculated as:

Precision(Ri) =
|Ri ∩G|
|Ri|

(9)

The average precision pavg is then computed as:

pavg =
1

n

n∑
i=1

Precision(Ri) (10)

Coverage@k. Coverage@k is defined as the pro-
portion of the ground truth set that is covered by
the union of items across a sample of k randomly
selected runs (assuming the total number of runs
n > k. Specifically, for a decision type and agent
submitted decisions across a sample of k runs
{R1, R2, . . . , Rk}, coverage@k is calculated as:

coverage@k =

∣∣∣⋃k
i=1Ri ∩G

∣∣∣
|G|

(11)

For modeling decisions in which each run has
one submission, the denominator is min(|G|, k).

In our experiments, we report coverage@10 for
several reasons. First, we manually determined that
for all datasets in BLADE, conceptual variable and
transformation decisions can be adequately covered
in 10 runs. In addition, generating 10 indepen-
dent analyses represents a reasonable and realistic
scenario, mirroring a situation where one might

3https://python.langchain.com/v0.1/docs/

19

https://python.langchain.com/v0.1/docs/


leverage crowd-sourced analyses from 10 different
analysts.

F1-score. To reflect the overall performance while
balancing precision and coverage, we compute F1-
score calculated as follows:

F1 =
2× (pavg × coverage@k)

pavg + coverage@k
(12)

To capture performance on BLADE in a single
metric, for each decision type, we first take pavg
and coverage@10 averaged across all datasets and
calculate the F1-score. Next, we take the weighted-
averaged F1-score based on the number of ground
truth decisions for each decision type. For statis-
tical modeling decisions, the weight is based on
min(|Gmodel|, 10).

Bootstrap Estimates and Confidence Intervals.
To account for the variability in selecting subsets
of runs (especially for computing coverage@10),
we employed a bootstrap procedure to estimate
the expected F1-score and its confidence intervals.
Specifically, we performed m = 1000 iterations of
random sampling with replacement from the set of
runs for each dataset. In each iteration, we recalcu-
lated both average precision and coverage@10, and
then computed the corresponding F1-score. The
final reported F1-score is the average of these boot-
strap iterations, with a 95% confidence interval
derived from the distribution of the bootstrap sam-
ples.

A.8 Case Studies with Qualitative Insights

To gain additional insight into the performance of
LMs, two of the annotators sampled 56 output files
from LM-generated results for qualitative case stud-
ies. Our findings reveal several limitations in LMs’
ability to generate robust and reliable analyses:

1. Composite Variables: In the TeachingRat-
ings dataset (Figure 20-1, Figure 20-2), GPT-4
failed to create important composite variables,
such as evaluation response rate, despite their
interpretability and explanatory power. LLMs
often included only one of the component vari-
ables.

2. Interaction Effects: GPT-3.5 (Figure 20-3)
struggled with understanding interaction ef-
fects in linear regression models, often includ-
ing irrational interaction terms without main
effects (e.g., eval ~ beauty * gender).

3. Variable Selection: While GPT-4 provided
more comprehensive models with most con-
trol variables (see one example in Figure
20-4), it sometimes included redundant vari-
ables (e.g., “relative group size” derived from
“n_focal” and “n_other”) (Figure 21-5). In
contrast, GPT-3.5 often used very minimal
models (only one IV with no controls) (Figure
21-6).
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Dataset Domain Keywords Research Question Source paper

hurricane
Behavioral
Sciences

hurricane names,
gender stereotypes,
risk perception,
natural disasters

Hurricanes with more
feminine names are perceived
as less threatening and hence
lead to fewer precautionary
measures by the general public.

(Jung et al., 2014)
(Malter, 2014)
(Maley, 2014)
(Bakkensen and Larson, 2014)
(Simonsohn et al., 2020)

mortgage
Finance and
Economics,
Demographics

lending discrimination,
redlining,
credit risk,
fair housing

How does gender affect
whether banks approve an
individual’s mortgage application?

(Liu et al., 2020b)
(Munnell et al., 1996)
(Young and Holsteen, 2017)

soccer
Behavioral
Sciences

skin tone,
racial bias,
referee decisions,
sports analytics

Are soccer players with
a dark skin tone more likely
than those with a light skin tone to
receive red cards from referees?

(Silberzahn et al., 2018)
(Auspurg and Brüderl, 2021)

reading Education

dyslexia,
web accessibility,
reading comprehension,
user experience

Does ’Reader View’ –
a modified web page layout –
improves reading speed for
individuals with dyslexia?

(Li et al., 2019)
(Liu et al., 2020b)

Fish
Health and
Well-being

recreational fishing,
environmental conservation,
visitor demographics,
count data analysis

How many fish on average
do visitors takes per hour,
when fishing?

(McElreath, 2018)

AMTL
Evolutionary
Biology

antemortem tooth loss,
fossil hominins,
dental anthropology,
comparative anatomy

Do modern humans have higher
frequencies of antemortem
tooth loss compared to non-human
primate genera after accounting for
the effects of age, sex, and tooth class?

(Gilmore, 2013)
(McElreath, 2018)
(Konigsberg and Frankenberg, 2013)

Boxes
Education,
Behavioral
Sciences

cultural transmission,
social learning biases,
cognitive development,
cross-cultural research

How do children’s reliance on
majority preference
develop over growth in age
across different cultural contexts?

(Van Leeuwen et al., 2018)
(McElreath, 2018)

Crofoot
Evolutionary
Biology

intergroup competition,
territorial behavior,
spatial analysis,
animal tracking

How do relative group size and
contest location influence
the probability of a
capuchin monkey group
winning an intergroup contest?

(Crofoot et al., 2008)
(McElreath, 2018)

Panda_nuts
Evolutionary
Biology

tool use,
skill acquisition,
social learning,
primate cognition

How do age, sex, and receiving
help from another chimpanzee
influence the nut-cracking efficiency
of western chimpanzees?

(Boesch et al., 2019)
(McElreath, 2018)

Affairs
Behavioral
Sciences,
Demographics

infidelity,
marital satisfaction,
sexual behavior,
limited dependent variables

Does having children decrease
(if at all) the engagement
in extramarital affairs?

(Fair, 1978)
(Kleiber and Zeileis, 2008)
(Long and Freese, 2006)

CASchools Education

standardized testing,
school resources,
achievement gap,
education policy

Is a lower student-teacher ratio
associated with
higher academic performance?

(Kleiber and Zeileis, 2008)
(Stock and Watson, 2020)

TeachingRatings Education

student evaluations,
instructor characteristics,
gender bias,
higher education

What is the impact of beauty on
teaching evaluations
received by teachers?

(Simonsohn et al., 2020)
(Hamermesh and Parker, 2005)
(Kleiber and Zeileis, 2008)
(Stock and Watson, 2020)

Table 3: Open-ended scientific research questions in BLADE across different domains.
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BLADE

Question Are soccer players with a dark skin
tone more likely than those with a
light skin tone to receive red cards
from referees?

How do age, sex, and receiving help
from another chimpanzee influence
the nut-cracking efficiency of western
chimpanzees?

Does ’Reader View’ – a modified web
page layout – improves reading speed
for individuals with dyslexia?

Answer(s) 16 conceptual variables, 77 transfor-
mations, and 41 modeling decisions

11 conceptual variables, 19 transfor-
mations, and 31 modeling decisions

18 conceptual variables, 24 transfor-
mations, and 12 modeling decisions

ARCADE (Yin et al., 2022)

Question How many male and female employ-
ees are born in 1992?

Which countries host at least two
Olympic games?

What is the most expensive phone in
each brand?

Answer(s) Two number counts A list of country names Dataframe of brand, model and price

DABench (Hu et al., 2024b)

Question Calculate the correlation coefficient
between the "High Price" column and
the "Low Price" column.

Calculate the mean fare paid by the
passengers.

Categorize passengers into age groups
and calculate mean fare for each
group.

Answer(s) ["relationship_type", "linear"],
["correlation_coefficient", "0.99"]

["mean_fare", "34.65"] ["mean_fare_elderly", "43.47"],
["mean_fare_teenager", "31.98"],
["mean_fare_child", "31.09"],
["mean_fare_adult", "35.17"]

MLAgentBench (Huang et al., 2023b)

Question [CIFAR-10] Given a training script
on a dataset train.py, improve upon
the current model performance
(trained with current hyperparmeters
in train.py). The training epochs
should be within 10 to save time.

[Feedback] Go through the
data_description.txt file to understand
the data and all the features. You can
summarize it in your research logs
to keep track of what all you have to
do. Then fill in the provided train.py
script to train a model and iterate over
different models or feature selections
to get a better performance.

[IMDB] Fill out train.py to 1) finetune
DistilBERT on the IMDb dataset to
determine whether a movie review is
positive or negative and 2) save per
class probabilities for test set exam-
ples to submission.csv.

Answer(s) Predictions for ML classification Predictions for ML regression Predictions for ML classification

DS-Agent (Guo et al., 2024b)

Question [Airline Reviews] You are solv-
ing this machine learning tasks of re-
gression: The dataset presented here
(Airline reviews) comprises customer
feedback for British Airways. Here,
we provide the text reviews. Your task
is to predict the corresponding rating
in the range of 1-10 given the reviews
in the test set. The evaluation metric
is root mean squared error (RMSE).

[Bitcoin Price Prediction] You
are solving this machine learning
tasks of regression: The dataset pre-
sented here (the BTC News to Bit-
coin Price dataset) comprises a series
of BTC news title. Your task is to
predict the bitcoin price based on the
given BTC news title in the test set.
The evaluation metric is root mean
squared error (RMSE).

[BoolQ] You are solving this ma-
chine learning tasks of classification:
The dataset presented here (the BoolQ
dataset) comprises a series of passage-
question pairs. Given a passage and
a question, your task is to identify
whether the question can be inferred
from the passage, with 0 as False and
1 as True. The evaluation metric is
accuracy.

Answer(s) Predictions for ML regression Predictions for ML regression Predictions for ML classification

ML-Benchmark for Data Interpreter (Hong et al., 2024b)

Question [Titanic] This is a Titanic passen-
ger survival dataset, and your goal
is to predict passenger survival out-
comes. The target column is Survived.
Perform data analysis, data prepro-
cessing, feature engineering, and mod-
eling to predict the target. Report ac-
curacy on the eval data.

[Santander Customer] This is a
customer’s financial dataset. Your
goal is to predict which customers
will make a specific transaction in the
future. The target column is the tar-
get. Perform data analysis, data pre-
processing, feature engineering, and
modeling to predict the target. Report
AUC on the eval data.

[Santander Value] This is a medi-
cal dataset with over fifty anonymized
health characteristics linked to three
age-related conditions. Your goal is
to predict whether a subject has or has
not been diagnosed with one of these
conditions.The target column is Class.
Perform data analysis... the target. Re-
port F1 Score on the eval data.

Answer(s) Predictions for ML classification Predictions for ML classification Predictions for ML regression

Table 4: Comparison of task examples in BLADE and related benchmarks. BLADE prioritizes open-ended
scientific research questions rather than ML prediction tasks or data analysis code execution, focusing on the
analysis approach and allowing for multiple valid solutions.
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Annotator ID Current Occupation Stats and Analysis Exp. Analysis Frequency

A01 PhD student in Statistics 8 Years A few times a week
A02 PhD student in Statistics 5 Years A few times a week
A03 PhD student in Statistics 4 Years A few times a week
A04 PhD student in Biomedical and Health

Informatics
5 Years A few times a week

A05 PhD student in Measurement, Evalua-
tion, and Research Methodology

6 Years A few times a week

A06 Master’s student in Communications 5 Years A few times a week
A07 Master’s student in Statistics 6 Years A few times a week
A08 Data Scientist in the Finance Industry 8 Years Daily
A09 Data Scientist in the Tech Industry 8 Years Daily
A10 Data Scientist in the Tech Industry 5 Years Daily
A11 Quantitative Researcher in Finance 5 Years Daily

Table 5: Expert level data annotation. All annotators have at least 4 years of experience in statistics and data analysis.
In addition, they are either currently pursuing a postgraduate degree in a relevant scientific field or are regularly
working with data in industry.

Verb Description Input
Columns

Affected
Output
Column(s)

Example Code

Derive Derive a new column value based on the
provided expressions.

Mandatory One # derive a new column ’sumXY’ by adding
’x’ and ’y’
df[’sumXY’] = df[’x’] + df[’y’]

Filter Filter a table to a subset of rows based
on the input criteria.

Optional All # filter the dataframe to include only
rows where ’x’ > 2
df = df[df[’x’] > 2]

Slice Extract rows with indices from start to
end (end not included).

Optional All # slice the dataframe to include rows 2
to 4
df = df.iloc[2:4]

Groupby Group table rows based on a set of col-
umn values. Groupby should return a
pandas groupby object for subsequent
operations.

Mandatory All except
groupby in-
put columns

# group the dataframe by ’x’
grouped = df.groupby(’x’)

De-
duplicate

De-duplicate table rows by removing re-
peated row values.

Optional All # remove duplicate rows in the dataframe
df = df.drop_duplicates()

Impute Impute missing values or rows. Optional One/All # replace NaN values with a specific value
df = df.fillna(0)

Rollup Rollup a table to produce an aggregate
summary. This is used with groupby
when aggregating a group.

Mandatory One df_grp = df.groupby(’x’)
# rollup the grouped dataframe to get the
mean of ’y’
df = df_grp.agg(mean_y=(’y’, ’mean’))
.reset_index()

Table 6: Taxonomy of transformation verbs utilized in the analysis ground truth. BLADE leverages these verbs
in its evaluation to measure the nuance and complexity inherent in transformation approaches (Appendix A.4.1
explains our “fuzzy” transformation matching).
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SYSTEM_PROMPT = """You are an AI Data Analysis assistant who is an expert at understanding a research question, reflecting on the data 
and relevant domain knowledge, and representing this conceptual knowledge in a statistical model.

Key to this modeling process is formalizing the conceptual model, which includes variables and their relationships that are relevant to the 
domain and data."""



INSTRUCTION_PROMPT = """<Instruction> Given the research question, dataset, and existing conceptual variables already expressed by the 
analyst, suggest an additional conceptual variable that may be relevant to the research question and dataset that is DIFFERENT from the 
already specified variables. If there are no more reasonable variables, you can return "none".



A conceptual variable is an abstract idea or concept that researchers are interested in studying.

It represents a broad concept or construct that cannot be directly observed or measured.

Instead, researchers create operational definitions or measurable indicators that represent the conceptual variable.

For example, "intelligence" is a conceptual variable that researchers might operationalize using measures such as IQ tests, academic 
achievement, or problem-solving tasks.



Respond in this format exactly:

Reflection: what additional factor might influence the variables in our analysis and can be operationalized using the available data?

Thought: If there is an additional variable, does it have a moderating effect on another variable? what columns from the dataset would be 
involved in operationalizing the control variable? Are there different reasonable ways to operationalize this involving different/other columns?

Result: the control variable in the format specified in "Format Instructions"

</Instruction>



<Format Instructions>


</Format Instructions>



<Example>

Research Question: 
Dataset Schema: 
Specified Variables: 
Reflection: 
Thought: 
Result:
</Example>



Research Question:
Dataset Schema:
Specified Variables: 
Reflection: """

{format_instructions}


{research_question_1shot}

{dataset_schema_1shot}


{variables_1shot}

{reflection_1shot}


{thought_1shot}

 {control_variables_1shot}


 {research_question}

 {dataset_schema}


{variables}


Figure 9: Prompt template A asking the LM to suggest an additional conceptual variable relevant to the research
question and dataset. The format instructions asks the LM to generate a JSON representation of a Pydantic Ob-
ject. Specifically we use Langchain’s pydantic parser (https://python.langchain.com/v0.1/docs/modules/
model_io/output_parsers/types/pydantic/) for the format instructions. The dataset schema is a, JSON repre-
sentation of a data table. We use the data summarizer in LIDA (Dibia, 2023)
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SYSTEM_PROMPT = """You are an expereinced AI Data Analysis who is an expert at understanding a research question, relecting on the data 
and relevant domain knowledge, and representing this conceptual knowledge in a statistical model.

From the conceptual model, which includes variables and their relationships that are relevant to the domain and data, you are able to 
transform the data to operationalize a given conceptual variable. """



USER_PROMPT = """<Instruction> Given the research question, dataset, the conceptual variable we want to operationalize, and existing 
transformations that try to operationalize the conceptual variable, suggest an alternative transformation function that can represent the 
conceptual variable.

Make sure your suggested alternative transformations are INDEED NECESSARY and REASONABLE for the analysis.

This transformation should be DISTINCT from those already specified.

If there are NO MORE reasonable transformations, or the transformation uses an original column in the dataset, you can return an empty 
string.

</Instruction>



<Approach>

To operationalize the variable consider the relevant columns from the dataset schema and reflect on what data transformations are 
necessary. Write code that would fill the following code template.

The function will take in the original dataframe and return the dataframe after any transformations in the *df* variable, and the derived 
column representing the operationalized variable. Use ONLY the data available, DO NOT assume there is additional data.

```python

def transform(df: pd.DataFrame)  -> Tuple[pd.DataFrame, str]:

    '''

    Transform the data to derive the column that operationalizes the conceptual variable.



    Parameters:

    df (pd.DataFrame): The input DataFrame containing the data to be transformed.



    Returns:

    Tuple[pd.DataFrame, str]: A tuple containing the transformed DataFrame, the final derived column that represents the conceptual variable.

    '''

    # Your code here

    return df, derived_col

```

</Approach>



<Example>

Research Question: 
Dataset Schema: 
Conceptual Variable: 
Existing Transformations: ```python


```

Reflection:
Result: 

</Example>



Research Question:
Dataset Schema:
Conceptual Variable: 
Existing Transformations: 
Reflection: """

{research_question_1shot}

{dataset_schema_1shot}


{conceptual_variable_1shot}


{existing_transformations_1shot}


 {reflection_1shot}

{result_1shot}



 {research_question}

 {dataset_schema}


{conceptual_variable}

{existing_transformations}


Figure 10: Prompt template B asking the LM to suggest an alternative transformation in Python that transforms the
given data columns to operationalize a conceptual variable.
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SYSTEM_PROMPT = """You are an AI Data Analysis assistant who is an expert at understanding a research question, relecting on the data 
and relevant domain knowledge, and representing this conceptual knowledge in a statistical model.

Key to this modeling process is formalizing the conceptual model, which includes variables and their relationships that are relevant to the 
domain and data."""
 


USER_PROMPT = """<Instruction> Given the research question, dataset, and existing conceptual variables already carefully analyze and 
accurately match the conceptual variables specified ensuring a strong correspondence between the matched points. Examine the verbatim 
closely.



Please follow the example JSON format below for matching decisions. For instance, if variable 1 from variables A is nearly identical to variable 
2 from variables B, it should look like this:

{{

"A1-B2": {{"rationale": "<explain why A1 and B2 are nearly identical>", "similarity":

    "<5-10, only an integer>"}},

...

}}

Do not match a variable with itself. Note that you should only match variables with a significant degree of similarity for conducting the 
analysis.

Also pay attention to the type of variable it is (e.g., independent, dependent, control) and how the variable fits with the research question, 
dataset, and the analysis.



Specifically, two variables would be similar if they were to be operationlized in the same way, would be used in the same way in a statistical 
model, and lead to measurements of the same concept.

Refrain from matching points with only superficial similarities or weak connections.

For each matched pair, rate the similarity on a scale of 5-10.

5. Somewhat Related: Variables address a similar concept for the analysis but from different angles and would be operationalized differently.

6. Moderately Related: Variables address a similar concept and but might be operationalized differently.

7. Strongly Related: Variables are largely aligned but differ in some details or nuances that can impact the analysis differently.

8. Very Strongly Related: Variables offer similar concepts or concerns, and would be operationalized in a similar way.

9. Almost Identical: Variables are nearly the same, operationalized the same way, with minor differences in wording or

    presentation.

10. Identical: Variables are exactly the same in terms of the concept, operationalization, and impact on the analysis.

If no match is found, output an empty JSON object. Provide your output as JSON only.

</Instruction>



<Example>

Research Question: 
Dataset Schema: 
Variables to Match:

======Conceptual Variables A:

```


```

======Conceptual Variables B:

```


```

Result:

```json


```

</Example>



Research Question:
Dataset Schema:
Variables to Match:

======Conceptual Variables A:

```


```

======Conceptual Variables B:

```


```

Result:

"""

{research_question_ex}

{dataset_schema_ex}


{variables_a_ex}


{variables_b_ex}


{result_ex}


 {research_question}

 {dataset_schema}


{variables_a}


{variables_b}


Figure 11: Prompt template C asking the LM to match conceptual variables from two given sets, considering their
similarity in the context of the research question and dataset.
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SYSTEM_PROMPT = """You are an AI Python Data Science assistant who is an expert at understanding data transformation code."""



USER_PROMPT = """<Instruction> Given a description of the transformation API, and Python code, convert the code to the sequence of unit 
transformations that are applied to the dataframe.

Each unit function will take in and return a TransformDataReturn objet defined below:

```python

class TransformDataReturn(BaseModel):

    df: pd.DataFrame

    column_mapping: Dict[FrozenSet[str], str] # we can specify multiple input and output column mappings

    groupby_cols: Set[str] # only for groupby verb

    transform_verb: Literal['derive', 'filter', 'groupby', 'deduplicate', 'impute', 'rollup', 'orderby']

```

These transform functions will be called by the main "transform" function that will apply the transformations in sequence.

IMPORTANT: The transform functions (i.e., transform_funcs) cannot call each other or reference any variables outside of the function.

```python

def transform(df: pd.DataFrame,

              transform_funcs: List[Callable[[pd.DataFrame], TransformDataReturn]]):

    td_objs: List[TransformDataReturn] = []

    for func in transform_funcs:

        td_obj = func(df)

        df = td_obj.df

        td_objs.append(td_obj)

    return df

```

Your answer should be a list of transform functions of type Callable[[pd.DataFrame], TransformDataReturn] stored in the variable 
"transform_funcs".

DO NOT ADD ANY NEW CODE THAT WAS NOT SPECIFIED IN THE ORIGINAL CODE.

For example, if the original code is empty then return empty.

If there is any statistical modeling code, do not include it in the transformation functions.

We are only interested in the code that transforms the dataframe.

</Instruction>



<TransformationAPI>



</TransformationAPI>



<Example 1>

original code: ```python


```

result: ```python


```

</Example 1>

<Example 2>

original code: ```python


```

result: ```python


```

</Example 2>



<Example 6>

original code: ```python


```

result: ```python


```

</Example 6>

<Example 7>

original code: ```python


```

result: ```python


```

</Example 7>

original code: ```python


```

result:

"""

\\ Please refer to the next figure for content here. \\



\\ Example 3 - 5 with the same template are omitted here due to space limit. \\



{ex_code}


{ex_converted_code}


{ex2_code}


{ex2_converted_code}


{ex6_code}


{ex6_converted_code}


{ex7_code}


{ex7_converted_code}


{code}


Figure 12: Prompt template D asking the LM to convert a given Python function for data transformation into a
sequence of unit transformation functions, each taking a DataFrame as input and returning a TransformDataReturn
object. Refer to Figure 13 for the content of TransformationAPI.
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Content of <TransformationAPI>



<TransformationAPI>

Each transformation verb transforms the function in some way. In addition to the verb, depending on the code and transformation, there can 
be an input columns to output column mapping that specifies which input columns are used in the transformation and how it affects each 
output column specified or the whole datframe.

Here is the description of each transformation verb, example code, and any input and output columns specification for each transformation:



**Derive**: Derive new column values based on the provided expressions. Input is a dataframe or groupby object.

    ```python

    import pandas as pd

    import numpy as np



    # create a dataframe

    df = pd.DataFrame({{

        'x': [1, 2, 3, 4, 5],

        'y': [5, 4, 3, 2, 1]

    }})

    # derive a new column 'sumXY' by adding 'x' and 'y'

    df['sumXY'] = df['x'] + df['y']

    ```

    column_mapping: {{frozenset(['x', 'y']): 'sumXY'}}

**Filter**: Filter a table to a subset of rows based on the input criteria.

    ```python

    # filter the dataframe to include only rows where 'x' is greater than 2

    df = df[df['x'] > 2]

    ```

    column_mapping: {{frozenset(['x']): 'ALL'}}

**Groupby**: Group table rows based on a set of column values. Returns a groupby object

    ```python

    # group the dataframe by 'x'

    grouped = df.groupby('x')

    ```

    groupby_cols: set(['x'])

**De-duplicate**: De-duplicate table rows by removing repeated row values.

    ```python

    # remove duplicate rows in the dataframe

    df = df.drop_duplicates()

    ```

    column_mapping: {{}}

**Impute**: Impute missing values or rows.

    ```python

    # replace NaN values in column 'x' with the mean of 'x'

    df['x'] = df['x'].fillna(df['x'].mean())

    ```

    column_mapping: {{frozenset(['x']): 'x'}}

**Rollup**: Rollup a table to produce an aggregate summary. Input is a grouby object. This is used in conjunction with groupby when we 
aggregate a group.

    ```python

    grouped_df = df_grped.agg({'y': 'mean'})

    ```

    column_mapping: {{frozenset(['y']): 'y'}}

**Orderby**: Order table rows based on a set of column values. Returns a dataframe.**

    ```python

    # order the dataframe by 'x'

    df = df.sort_values(by='x')

    ```

    column_mapping: {{frozenset(['x']): 'ALL'}}

IMPORTANT:

Only "Filter" and "Orderby" transformations can have column_mapping with 'ALL' as the output column value.

For other transformers you need be specific about the exact column mapping.

IMPORTANT:

We do not consider any operation that selects a subset of columns as a transformation.

The code for this should be included with another transformation.

</TransformationAPI>

Figure 13: Detailed description of the transformation API, specifying the available transformation verbs (derive,
filter, groupby, de-duplicate, impute, rollup, and orderby) along with example code and input/output column
mappings for each transformation. This is used in part of the prompt in Figure 12.
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SYSTEM_PROMPT = """You are an AI Python Data Science assistant who is an expert at understanding statistical modeling code."""



USER_PROMPT = """<Instruction> Given the code snippet, carefully analyze and accurately determine the statistical model specification. 
Return the model specification that best matches the code snippet. Please respond in the format specified by "Format Instructions".



IMPORTANT: the column names in the model specification should be the EXACT column names used in the model code. 

</Instruction> 



<Format Instructions>


</Format Instructions>



<Example 1>

Code Snippet: 
Model Specification: 
</Example 1>

<Example 2>

Code Snippet: 
Model Specification: 
</Example 2>

<Example 3>

Code Snippet: 
Model Specification:
</Example 3>



Code Snippet: 
Model Specification:

"""


{format_instructions}


{code_snippet_ex}

{model_spec_ex}


{code_snippet_2_ex}

{model_spec_2_ex}


{code_snippet_3_ex}

 {model_spec_3_ex}


{code_snippet}


Figure 14: Prompt template E instructing the LM to analyze code snippets and determine the corresponding
statistical model specifications.
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SYSTEM_PROMPT = """You are an AI Data Analysis assistant who is an expert at statistical modeling and understands the similarities, 
nuances, and differences between statistical models."""



USER_PROMPT = """<Instruction> Give different statistical model specifications written in natural language applied to the same analysis 
carefully analyze and accurately determine the matched model specifications. Return ALL COMBINATIONS of matching pairs between the two 
sets of models.

Please follow the example JSON format below for matching model specifications.

For instance, if model 1 from models A is identical to model 2 and model 4 from models B, and model 2 from models A is identical to model 2 
and model 3 from models B it should look like this:

{{

"A1-B2": {{"rationale": "<explain why A1 and B2 are identical>"}},

"A1-B4": {{"rationale": "<explain why A1 and B4 are identical>"}},

"A2-B2": {{"rationale": "<explain why A2 and B2 are identical>"}},

"A2-B3": {{"rationale": "<explain why A2 and B3 are identical>"}},

...

}}



Do not match a variable with itself. Note that you should only match models that are the exact same for conducting the analysis.

Specifically, two models are the same if give the same data, the model specification would lead to the same results. For example "logistic 
regression" is equivalent to a "binomial GLM with a logit link function" or "binary classification using logistic regression".

However, "logistic regression" is not equivalent to "linear regression".

If the specification or code references specific data or variables, IGNORE it for this task.

</Instruction>



<Example>

Models to Match:

======Statistical Model Specification A:

```


```

======Statistical Model Specification B:

```


Result:


</Example>



Models to Match:

======Statistical Model Specification A:

```


```

======Statistical Model Specification B:

```


```

Result:

"""

{models_a_ex}


{models_b_ex}


{result_ex}


{models_a}


{models_b}


Figure 15: Prompt template F asking the LM to match statistical model specifications written in natural language,
determining which models from two given sets are identical.
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SYSTEM_PROMPT = """You are an AI Data Analysis Assistant who is an expert at writing an end-to-end scientific analysis given a research 
question and a dataset.

You are skilled at understanding a research question, relecting on the data and relevant domain knowledge, and representing this conceptual 
knowledge in a statistical model.

Key to this modeling process is formalizing the conceptual model, which includes variables and their relationships that are relevant to the 
domain and data."""
 


USER_PROMPT = """<Instruction>

Given the research question, dataset formulate the conceptual model and write an analysis including all necessary data transformations and a 
statistical model to answer the research question.

</Instruction>



<Format Instructions>

You will return 3 things:

1. The conceptual variables which includes a natural language description of the variables, the variable type (i.e., Independent, Dependent, 
Control), and any relationships between the variables. Each variable should also describe which column(s) in the final dataframe (output of 
the transform function and used in the statistical model) it is associated with.

IMPORTANT: The column names in the conceptual variables should be the EXACT column names used in the model code.

2. The transform function which follows the which will take the original dataframe and return the dataframe after all transformations.

The returned dataframe should include all the columns that are necessary for the subsequent statistical modeling.

If you are changing any values of columns or deriving new columns, you should add this as a new column to the dataframe.

3. The model function which will take the transformed dataframe and run a statistical model on it. The model function should return the 
results of the model.



The following libraries are already imported but you can import any popular libraries you need:

import numpy as np

import pandas as pd

import sklearn

import scipy

import statsmodels.api as sm

import matplotlib.pyplot as plt



Here is the code template for the transform function:

```python

def transform(df: pd.DataFrame) -> pd.DataFrame:

    # Your code here

    return df

```

Here is the code template for the model function:

```python

def model(df: pd.DataFrame) -> Any:

    # Your code here

    return results

```



Please return the conceptual variables, the transform function, and the model function in the format specified below:


</Format Instructions>



<Example>

Research Question:
Dataset Schema:
Result: 
</Example>



Research Question: 
Dataset Schema: 
Result:

"""

{format_instructions}


 {research_question_ex}

 {dataset_schema_ex}


{result_ex}


{research_question}

{dataset_schema}


Figure 16: Prompt template G asking the LM to formulate a conceptual model and write an end-to-end analysis,
including data transformations and a statistical model, given a research question and dataset.
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<Example>

Research Question: What is the effect of hormonal fluctuations associated with fertility on women's religiosity?

Dataset Schema: {

  "dataset_description": "A total of 275 women participated in the study for this dataset. Each participant was asked to answer three religiosity 
items using a 9-point scale. Further, each participant was asked to indicate the typical length of her menstrual cycle, the start date of her last 
menstrual period, and the start date of her previous menstrual period. In addition, each woman indicated how sure she was about these two 
start dates, using a 9-point scale. Finally, each woman was asked to indicate her current romantic relationship status with the following four 
response options: (1) not dating/romantically involved with anyone, (2) dating or involved with only one partner, (3) engaged or living with my 
partner, and (4) married.",

  "fields": [

    {

      "column": "WorkerID",

      "properties": {

        "dtype": "number",

        "std": 79.52986860293433,

        "min": 1,

        "max": 275,

        "samples": [

          31,

          140,

          196

        ],

        "num_unique_values": 275,

        "description": "The unique identifier of a participant."

      }

    },

   


  ],

  "num_rows": 275,

  "field_names": [

    "WorkerID",

    "Rel1",

    "Rel2",



 

  ]

}

Result: {

  "cvars": {

    "ivs": [

      {

        "description": "Women's fertility",

        "columns": [

          "FertilityGroup"

        ]

      }

    ],

    "dv": {

      "description": "Women's religiosity",

      "columns": [

        "AvgReligiosity"

      ]

    },

    "controls": [

      {

        "description": "Relationship status of the individual",

        "is_moderator": true,

        "moderator_on": "Women's fertility",

        "columns": [

          "InRelationship"

        ]

      }

    ]

  },



  "transform_code":” 

  

  ",



  "model_code": "


  "

}

</Example>

  // Rest of the columns in this json object are omitted here due to page limits //



 // Rest of the columns in this json object are omitted here due to page limits //



# drop the rows with missing values in the ReportedCycleLength, Rel1, Rel2, and Rel3 columns 
  df = df.dropna(subset=['ReportedCycleLength']) 
  df = df.dropna(subset=['Rel1', 'Rel2', 'Rel3'])  

  df['AvgReligiosity'] = df[['Rel1', 'Rel2', 'Rel3']].mean(axis=1)  

  # Convert date columns to datetime format 
  df['DateTesting'] = pd.to_datetime(df['DateTesting'], format='%m/%d/%y') 
  df['StartDateofLastPeriod'] = pd.to_datetime(df['StartDateofLastPeriod'], format='%m/%d/%y') 
  df['StartDateofPeriodBeforeLast'] = pd.to_datetime(df['StartDateofPeriodBeforeLast'], format='%m/%d/%y') 
   
  # Calculate the cycle length based on provided dates 
  df['ReportedCycleLength'] = (df['StartDateofLastPeriod'] - df['StartDateofPeriodBeforeLast']).dt.days 
  # Calculate the expected start date of the next menstrual period  

  df['ExpectedNextPeriod'] = df['StartDateofLastPeriod'] + pd.to_timedelta(df['ReportedCycleLength'], unit='d')  

  # Calculate the day of ovulation by subtracting 14 days from the expected start date of the next period 
  # since ovulation typically occurs around 14 days before the start of the next period 
  df['OvulationDate'] = df['ExpectedNextPeriod'] - pd.to_timedelta(14, unit='d') 
  # Calculate the cycle day on the date of testing  
  df['CycleDay'] = (df['DateTesting'] - df['OvulationDate']).dt.days + 14 
  # Define high-fertility (cycle days 6-14) and low-fertility (cycle days 17-27) groups 
  df['FertilityGroup'] = df['CycleDay'].apply(lambda x: 'High-Fertility' if 6 <= x <= 14 else ('Low-Fertility' if 17 <= x <= 27 else 'Other')) 
  # Filter out the 'Other' group to focus on the high and low fertility groups 
  df = df[df['FertilityGroup'].isin(['High-Fertility', 'Low-Fertility'])] 


  df['IsIncommittedRelationship'] = df['Relationship'].apply(lambda x: 0 if x in [1,2] else 1) 
  df['InRelationship'] = df['Relationship'].apply(lambda x: 0 if x == 1 else 1) 
  df['IsInRelationship'] = df['Relationship'].apply(lambda x: 0 if x == 1 else 1)


   model = smf.ols('AvgReligiosity ~ InRelationship * FertilityGroup', data=df).fit() 
   # Display the regression results 
   print(model.summary())


Figure 17: One-shot example used in prompt template G (Fig. 16)
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USER_PROMPT = """You are an AI Data Analysis Assistant who is an expert at writing an end-to-end scientific analysis given a research 
question and a dataset. You are skilled at understanding a research question, relecting on the data and relevant domain knowledge, and 
representing this conceptual knowledge in a statistical model. Key to this modeling process is formalizing the conceptual model, which 
includes variables and their relationships that are relevant to the domain and data. Since you are an Agent, you are encouraged to think about 
the problem, and use your Python interpreter to do exploratory data analysis, data cleaning, and statistical modeling.



<Agent Behavior> 

You operate under the ReAct framework. This means that you are an autonomous agent that can observe the environment, reason about the 
current state, and take actions to change the environment. Your goal is to perform actions that will help you with your objectives. You will 
have access to a memory of past obersevations and actions that you took. 



There are five tags that you should be aware of:

1. [Thought]: This is where you reason about the current state of the environment and decide on the best course of action.

    <example>

    [Thought]: Let's start by examing the data and understanding the relationships between the variables.

    </example>

2. [Action]: This is where you perform an action that will change the environment. To use a tool return markdown code with the tool name and 
the query as the argument. After you use a tool you will wait for a response from the environment in the form of an observation.

    <example>

    [Action]:

    ```python

    import pandas as pd

    df.head()

    ```

    </example>

3. [Observation]: This is where information about your actions will be returned to you. The results will be returned in markdown code.

    <example>

    [Observation]:

    ```

        WorkerID  Rel1  Rel2  Rel3  Sure1    

    0         1     6   5.0   6.0      9     

    1         2     1   2.0   1.0      4     

    2         3     7   8.0   8.0      5      

    3         4     2   1.0   1.0      8     

    4         5     5   5.0   5.0      5      

    ```

    </example>

4. [Finish]: When you generate this tag you should output your final answer. The final answer should be formatted as specified in the "Final 
Format Instructions".



**IMPORTANT** Always respond in this format exactly:

```

[Thought]: Your reasoning here.

[Action]: The code you want to execute in the environment.

[Observation]

```

The [Thought], [Action], [Observation] tags can repeat N times until you generate the [Finish] tag with the final result. 



Once and ONLY when you are done with your analysis and want to output the final result, you should respond in this format:

```

[Thought] Your reasoning here.

[Finish] The final result here as specified in the "Final Format Instructions" below.

```

</Agent Behavior>



<Instruction> 

Given the research question, dataset formulate the conceptual model and write an analysis including all necessary data transformations and a 
statistical model to answer the research question. 

    

Note for any code, the dataset is already loaded in a pandas dataframe in the variable named'df'. 

</Instruction>



<Final Format Instructions>

Your final goal is to return 3 things:

1. The conceptual variables which includes a natural language description of the variables, the variable type (i.e., Independent, Dependent, 
Control), and any relationships between the variables. Each variable should also describe which column(s) in the final dataframe (output of 
the transform function) it is associated with. 

    

2. The transform function which follows the which will take the original dataframe and return the dataframe after all transformations. The 
returned dataframe should include all the columns that are necessary for the subsequent statistical modeling. If you are changing any values 
of columns or deriving new columns, you should add this as a new column to the dataframe. 

    

3. The model function which will take the transformed dataframe and run a statistical model on it. The model function should return the 
results of the model.



Here is the code template for the transform function:

```python

def transform(df: pd.DataFrame) -> pd.DataFrame:

    # Your code here

    return df

```

Here is the code template for the model function:

```python

def model(df: pd.DataFrame) -> Any:

    # Your code here

    return results

```

Please return the conceptual variables, the transform function, and the model function in the format specified below.

IT IS VERY IMPORTANT THAT THIS SHOULD COME AFTER [Finish]:


</Final Format Instructions>



<Example with Multiple Steps>

Research Question: 
Dataset Schema: 

[Finish]:


</Example with Multiple Steps>



Research Question: 
Dataset Schema: 

[Thought]:

"""


{format_instructions}


{research_question_ex}

{dataset_schema_ex}


{react_trajectory_with_thoughts_actions_and_observations}


{result_ex}


{research_question}

{dataset_schema}



{previous_thoughts_actions_and_observations}



Figure 18: Prompt template H for using ReAct to instruct an LM-based agent to formulate a conceptual model and
perform end-to-end analysis given a research question and dataset.

33



SYSTEM_PROMPT = """You are an AI Data Analysis Assistant who is an expert at writing an end-to-end scientific analysis given a research 
question and a dataset.

You are skilled at understanding a research question, relecting on the data and relevant domain knowledge, and representing this conceptual 
knowledge in a statistical model.

Key to this modeling process is formalizing the conceptual model, which includes variables and their relationships that are relevant to the 
domain and data."""



USER_PROMPT = """<Instruction>

Given the research question and dataset, we want to perform an analysis to answer the question.

Specifically we want to operationalize the conceptual variable *feminity score of the hurricane names* which we will use for statistical 
modeling. Of the choices given, select transformation code that is LEAST justifiable to operationalize *feminity score of the hurricane 
names*."



In addition to the answer please also include a rationale. 
Return your answer in the format specified below: 
The output should be formatted as a JSON instance that conforms to the JSON schema below.  

As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, 
"required": ["foo"]} 
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-
formatted.  

Here is the output schema: 
``` 
{"properties": {"answer": {"title": "The answer to the multiple choice question", "enum": ["A", "B", "C", "D"], "type": "string"}, "rationale": {"title": 
"The rationale for the answer", "type": "string"}}, "required": ["answer", "rationale"]} 
```

</Instruction>



Research Question: Hurricanes with more feminine names are perceived as less threatening and hence lead to fewer precautionary measures 
by the general public.

Dataset: {

  "dataset_description": "The dataset is from the Simonsohn et al's [Specification curve analysis\n](https://www.nature.com/articles/
s41562-020-0912-z) paper published in Nature. It includes archival data on fatalities caused by hurricanes in the United States 
(1950\u20132012). Ninety-four Atlantic hurricanes made landfall in the United States during this period.",

  "fields": [

    {

      "column": "ind",

      "properties": {

        "dtype": "number",

        "std": 27.279418371121235,

        "min": 0,

        "max": 93,

        "samples": [

          40,

          22,

          55

        ],

        "num_unique_values": 94,

        "semantic_type": "",

        "description": "Unique identifier for each row"

      }

    },



 

  ],

  "num_rows": 94,

  "field_names": [

    "ind",

    "year",

    "name",

    "masfem",

    "min",

    "gender_mf",

    "category",

    "alldeaths",

    "ndam",

    "elapsedyrs",

    "source",

    "masfem_mturk",

    "wind",

    "ndam15"

  ]

}



A.

```python

df['masfem_mean'] = df[['masfem', 'masfem_mturk']].mean(axis=1)

```

B.

```python

df['masfem_mean'] = df[['masfem', 'masfem_mturk']].mean(axis=1)

```

C.

```python

df['masfem_combined'] = (9.0 * df['masfem'] + 32.0 * df['masfem_mturk']) / 41

```

D.

```python

df = df[df['alldeaths'] != 1833]

df['masfem_avg'] = (df['masfem'] + df['masfem_mturk']) / 2

```



The valid values are: A, B, C, D

Answer: """
 

   // Rest of the columns in this json object are omitted here due to page limits //



Figure 19: Prompt template I for a multiple-choice question asking the LM to select the least justifiable data
transformation code to operationalize a given conceptual variable, based on the provided research question and
dataset.
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1

2

GPT-4o










GPT-4o

Dataset:


TeachingRatings

Dataset:


TeachingRatings

Dataset:


TeachingRatings

3

4 GPT-4o
Dataset: 

Affairs

GPT-3.5 
Turbo

Figure 20: Part I for examples of LM-generated python codes transformations and models from case studies. Model
types and corresponding datasets are shown on the left of the code.
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5

6

7

GPT-4o

GPT-3.5 
Turbo

Deepseek
-coder-
instruct

Dataset: 

Crofoot

Dataset: 

Affairs

Dataset: 

Soccer

Figure 21: Part II for examples of LM-generated python codes transformations and models from case studies. Model
types and corresponding datasets are shown on the left of the code.
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Figure 22: Counts of different types of ground truth specifications recorded in BLADE, reflecting the diversity and
complexity of datasets and broad coverage of analysts’ approaches.
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