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Abstract
We introduce a novel approach to graph-level rep-
resentation learning, which is to embed an entire
graph into a vector space where the embeddings of
two graphs preserve their graph-graph proximity.
Our approach, UGRAPHEMB, is a general frame-
work that provides a novel means to performing
graph-level embedding in a completely unsuper-
vised and inductive manner. The learned neural
network can be considered as a function that re-
ceives any graph as input, either seen or unseen in
the training set, and transforms it into an embedding.
A novel graph-level embedding generation mecha-
nism called Multi-Scale Node Attention (MSNA),
is proposed. Experiments on five real graph datasets
show that UGRAPHEMB achieves competitive accu-
racy in the tasks of graph classification, similarity
ranking, and graph visualization.

1 Introduction
Recent years we have witnessed the great popularity of graph
representation learning with success in not only node-level
tasks such as node classification [Kipf and Welling, 2016a]
and link prediction [Zhang and Chen, 2018], but also graph-
level tasks such as graph classification [Ying et al., 2018] and
graph similarity/distance computation [Bai et al., 2019].

There has been a rich body of work [Belkin and Niyogi,
2003; Tang et al., 2015; Qiu et al., 2018] on node-level embed-
dings that turn each node in a graph into a vector preserving
node-node proximity (similarity/distance). Most of these mod-
els are unsupervised and demonstrate superb performance in
node classification and link prediction. It is natural to raise the
question: Can we embed an entire graph into a vector in an
unsupervised way, and how? However, most existing methods
for graph-level embeddings assume a supervised model [Ying
et al., 2018; Zhang and Chen, 2019], with only a few excep-
tions, such as GRAPH KERNELS [Yanardag and Vishwanathan,
2015] and GRAPH2VEC [Narayanan et al., 2017]. GRAPH
KERNELS typically count subgraphs for a given graph and
can be slow. GRAPH2VEC is transductive (non-inductive), i.e.
it does not naturally generalize to unseen graphs outside the
training set.

A key challenge facing designing an unsupervised graph-
level embedding model is the lack of graph-level signals in
the training stage. Unlike node-level embedding which has a
long history in utilizing the link structure of a graph to embed
nodes, there lacks such natural proximity (similarity/distance)
information between graphs. Supervised methods, therefore,
typically resort to graph labels as guidance and use aggregation
based methods, e.g. average of node embeddings, to generate
graph-level embeddings, with the implicit assumption that
good node-level embeddings would automatically lead to good
graph-level embeddings using only “intra-graph information”
such as node attributes, link structure, etc.

However, this assumption is problematic, as simple aggre-
gation of node embeddings can only preserve limited graph-
level properties, which is, however, often insufficient in mea-
suring graph-graph proximity (“inter-graph” information).
Inspired by the recent progress on graph proximity mod-
eling [Ktena et al., 2017; Bai et al., 2019], we propose a
novel framework, UGRAPHEMB ( Unsupervised Graph-level
Embbedding) that employs multi-scale aggregations of node-
level embeddings, guided by the graph-graph proximity de-
fined by well-accepted and domain-agnostic graph proximity
metrics such as Graph Edit Distance (GED) [Bunke, 1983],
Maximum Common Subgraph (MCS) [Bunke and Shearer,
1998], etc.

The goal of UGRAPHEMB is to learn high-quality graph-
level representations in a completely unsupervised and induc-
tive fashion: During training, it learns a function that maps a
graph into a universal embedding space best preserving graph-
graph proximity, so that after training, any new graph can
be mapped to this embedding space by applying the learned
function. Inspired by the recent success of pre-training meth-
ods in the text domain, such as ELMO [Peters et al., 2018],
BERT [Devlin et al., 2018], and GPT [Radford et al., 2018].
we further fine-tune the model via incorporating a supervised
loss, to obtain better performance in downstream tasks, includ-
ing but not limited to:

• Graph classification. The embeddings can be fed into
any classification model such as logistic regression for
graph classification.

• Graph similarity ranking. The embeddings learned by
UGRAPHEMB preserve the graph-graph proximity by
design, and for a graph query, a ranked list of graphs that
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are similar to the query can be retrieved.

• Graph visualization. The embeddings can be projected
into a 2-D space for graph visualization, where each
graph is a point. It renders human insights into the dataset
and facilitates further database analysis.

In summary, our contributions are three-fold:

1. We formulate the problem of unsupervised inductive
graph-level representation learning, and make an initial
step towards pre-training methods for graph data. We
believe that, given the growing amount of graph datasets
of better quality, this work would benefit future works in
pre-training methods for graphs.

2. We provide a novel framework, UGRAPHEMB, to gen-
erate graph-level embeddings in a completely unsuper-
vised and inductive fashion, well preserving graph prox-
imity. A novel Multi-Scale Node Attention (MSNA)
mechanism is proposed to generate graph-level embed-
dings.

3. We conduct extensive experiments on five real network
datasets to demonstrate the superb quality of the embed-
dings by UGRAPHEMB.

2 The Proposed Approach: UGRAPHEMB
We present the overall architecture of our unsupervised in-
ductive graph-level embedding framework UGRAPHEMB in
Figure 1. The key novelty of UGRAPHEMB is the use of
graph-graph proximity. To preserve the proximity between
two graphs, UGRAPHEMB generates one embedding per graph
from node embeddings using a novel mechanism called Multi-
Scale Node Attention (MSNA), and computes the proximity
using the two graph-level embeddings.

2.1 Inductive Graph-Level Embedding
Node Embedding Generation
For each graph, UGRAPHEMB first generates a set of node
embeddings. There are two major properties that the node
embedding model has to satisfy:

• Inductivity. The model should learn a function such that
for any new graph unseen in the training set, the learned
function can be applied to the graph, yielding its node
embeddings.

• Permutation-invariance. The same graph can be repre-
sented by different adjacency matrices by permuting the
order of nodes, and the node embedding model should
not be sensitive to such permutation.

Among various node embedding models, neighbor aggre-
gation methods based on Graph Convolutional Networks
(GCN) [Kipf and Welling, 2016a] are permutation-invariant
and inductive. The reason is that the core operation, graph con-
volution, updates the representation of a node by aggregating
the embedding of itself and the embeddings of its neighbors.
Since the aggregation function treats the neighbors of a node
as a set, the order does not affect the result.

A series of neighbor aggregation methods have been pro-
posed with different ways to aggregate neighbor information,

e.g. GRAPHSAGE [Hamilton et al., 2017], GAT [Velickovic
et al., 2018], GIN [Xu et al., 2019], etc. Since UGRAPHEMB
is a general framework for graph-level embeddings, and all
these models satisfy the two properties, any one of these meth-
ods can be integrated. We therefore adopt the most recent
and state-of-the-art method, Graph Isomorphism Network
(GIN) [Xu et al., 2019], in our framework:

u
(k)
i = MLP

(k)
Wk

(1 + ε(k)
)
· u(k−1)

i +
∑

j∈N (i)

u
(k−1)
j


(1)

where ui is the representation of node i, N (i) is the set of
neighbors of node i, MLP

(k)
Wk

denotes multi-layer perceptrons
for the k-th GIN layer with learnable weights Wk, and ε is a
scalar that can either be learned by gradient descent or be a
hyperparameter. GIN has been proven to be theoretically the
most powerful GNN under the neighbor aggregation frame-
work [Xu et al., 2019].

Graph Embedding Generation
After node embeddings are generated, UGRAPHEMB gener-
ates one embedding per graph using these node embeddings.
Existing methods are typically based on aggregating node em-
beddings, by either a simple sum or average, or some more
sophisticated way to aggregate.

However, since our goal is to embed each graph as a sin-
gle point in the embedding space that preserves graph-graph
proximity, the graph embedding generation model should:
• Capture structural difference at multiple scales. Ap-

plying a neighbor aggregation layer on nodes such as
GIN cause the information to flow from a node to its di-
rect neighbors, so sequentially stacking K layers would
cause the final representation of a node to include infor-
mation from its K-th order neighbors. However, after
many neighbor aggregation layers, the learned embed-
dings could be too coarse to capture the structural differ-
ence in small local regions between two similar graphs.
Capturing structural difference at multiple scales is there-
fore important for UGRAPHEMB to generate high-quality
graph-level embeddings.
• Be adaptive to different graph proximity metrics.

UGRAPHEMB is a general framework that should be
able to preserve the graph-graph proximity under any
graph proximity metric, such as GED and MCS. A simple
aggregation of node embeddings without any learnable
parameters limits the expressive power of existing graph-
level embedding models.

To tackle both challenges in the graph embedding genera-
tion layer, we propose the following Multi-Scale Node Atten-
tion (MSNA) mechanism. Denote the input node embeddings
of graph G as UG ∈ RN×D, where the n-th row, un ∈ RD

is the embedding of node n. The graph level embedding is
obtained as follows:

hG = MLPW

(
K

‖
k=1

ATTΘ(k)(UG)

)
(2)
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Figure 1: Overview of UGRAPHEMB. (a) Given a set of graphs, (b) UGRAPHEMB first computes the graph-graph proximity scores (normalized
distance scores in this example), (c) yielding a “hyper-level graph” where each node is a graph in the dataset, and each edge has a proximity
score associated with it, representing its weight/strength. UGRAPHEMB then trains a function that maps each graph into an embedding which
preserves the proximity score. The bottom flow illustrates the details of graph-level embedding generation. (d) After embeddings are generated,
similarity ranking can be performed. The green “+” sign denotes the embedding of an example query graph. Colors of dots indicate how
similar a graph is to the query based on the ground truth (from red to blue, meaning from the most similar to the least similar). (e) Finally,
UGRAPHEMB can perform fine-tuning on the proximity-preserving graph-level embeddings, adjusting them for the task of graph classification.
Different colors represent different graph labels in the classification task.

where ‖ denotes concatenation, K denotes the number of
neighbor aggregation layers, ATT denotes the following multi-
head attention mechanism that transforms node embeddings
into a graph-level embedding, and MLPW denotes multi-
layer perceptrons with learnable weights W applied on the
concatenated attention results.

The intuition behind Equation 2 is that, instead of only
using the node embeddings generated by the last neighbor
aggregation layer, we use the node embeddings generated by
each of the K neighbor aggregation layers.

ATT is defined as follows:

ATTΘ(UG) =

N∑
n=1

σ(uT
nReLU(Θ(

1

N

N∑
m=1

um)))un. (3)

where N is the number of nodes, σ is the sigmoid function
σ(x) = 1

1+exp (−x) , and Θ(k) ∈ RD×D is the weight parame-
ters for the k-th node embedding layer.

The intuition behind Equation 3 is that, during the genera-
tion of graph-level embeddings, the attention weight assigned
to each node should be adaptive to the graph proximity metric.
To achieve that, the weight is determined by both the node
embedding un, and a learnable graph representation. The
learnable graph representation is adaptive to a particular graph
proximity via the learnable weight matrix Θ(k).

2.2 Unsupervised Loss via Inter-Graph Proximity
Preservation

Definition of Graph Proximity
The key novelty of UGRAPHEMB is the use of graph-graph
proximity. It is important to select an appropriate graph prox-
imity (similarity/distance) metric. We identify three categories
of candidates:
• Proximity defined by graph labels.

For graphs that come with labels, we may treat graphs of
the same label to be similar to each other. However, such

proximity metric may be too coarse, unable to distinguish
between graphs of the same label.
• Proximity given by domain knowledge or human ex-

perts.
For example, in drug-drug interaction detection [Ma et
al., 2018], a domain-specific metric to encode compound
chemical structure can be used to compute the similarities
between chemical graphs. However, such metrics do
not generalize to graphs in other domains. Sometimes,
this information may be very expensive to obtain. For
example, to measure brain network similarities, a domain-
specific preprocessing pipeline involving skull striping,
band-pass filtering, etc. is needed. The final dataset only
contains networks from 871 humans [Ktena et al., 2017].
• Proximity defined by domain-agnostic and well-

accepted metrics.
Metrics such as Graph Edit Distance (GED) [Bunke,
1983] and Maximum Common Subgraph (MCS) [Bunke
and Shearer, 1998] have been widely adopted in graph
database search [Yan et al., 2005; Liang and Zhao, 2017],
are well-defined and general to any domain.

In this paper, we use GED as an example metric to demon-
strate UGRAPHEMB. GED measures the minimum number
of edit operations to transform one graph to the other, where
an edit operation on a graph is an insertion or deletion of a
node/edge or relabelling of a node. Thus, the GED metric
takes both the graph structure and the node labels/attributes
into account. The supplementary material contain more details
on GED.

Prediction of Graph Proximity
Once the proximity metric is defined, and the graph-level
embeddings for Gi and Gj are obtained, denoted as hGi and
hGj , we can compute the similarity/distance between the two
graphs.
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Multidimensional scaling (MDS) is a classic form of dimen-
sionality reduction [Williams, 2001]. The idea is to embed
data points in a low dimensional space so that their pairwise
distances are preserved, e.g. via minimizing the loss function

L(hi,hj , dij) = (||hi − hj ||22 − dij)2 (4)

where hi and hj are the embeddings of points i and j, and
dij is their distance.

Since GED is a well-defined graph distance metric, we can
minimize the difference between the predicted distance and
the ground-truth distance:

L = E(i,j)∼D(d̂ij − dij)2 (5)

= E(i,j)∼D(||hGi − hGj ||22 − dij)2. (6)

where (i, j) is a graph pair sampled from the training set and
dij is the GED between them.

Alternatively, if the metric is similarity, such as in the case
of MCS, we can use the following loss function:

L = E(i,j)∼D(ŝij − sij)2 (7)

= E(i,j)∼D(h
T
Gi
hGj − sij)2. (8)

After training, the learned neural network can be applied
to any graph, and the graph-level embeddings can facilitate a
series of downstream tasks, and can be fine-tuned for specific
tasks. For example, for graph classification, a supervised loss
function can be used to further enhance the performance.

3 Experiments
We evaluate our model, UGRAPHEMB, against a number of
state-of-the-art approaches designed for unsupervised node
and graph embeddings, to answer the following questions:
Q1 How superb are the graph-level embeddings generated by

UGRAPHEMB, when evaluated with downstream tasks
including graph classification and similarity ranking?

Q2 Do the graph-level embeddings generated by
UGRAPHEMB provide meaningful visualization
for the graphs in a graph database?

Q3 Is the quality of the embeddings generated by
UGRAPHEMB sensitive to choices of hyperparamters?

Datasets We evaluate the methods on five real graph
datasets, PTC, IMDBM, WEB, NCI109, and REDDIT12K.
The largest dataset, REDDIT12K, has 11929 graphs.

3.1 Task 1: Graph Classification
Intuitively, the higher the quality of the embeddings, the better
the classification accuracy. Thus, we feed the graph-level em-
beddings generated by UGRAPHEMB and the baselines into a
logistic regression classifier to evaluate the quality: (1) GRAPH
KERNELS (GRAPHLET (GK), DEEP GRAPHLET (DGK),
SHORTEST PATH (SP), DEEP SHORTEST PATH (DSP),
WEISFEILER-LEHMAN (WL), and DEEP WEISFEILER-
LEHMAN (DWL)) ; (2) GRAPH2VEC [Narayanan et al.,
2017]; (3) NETMF [Qiu et al., 2018]; (4) GRAPH-
SAGE [Hamilton et al., 2017].

For GRAPH KERNELS, we also try using the kernel matrix
and SVM classifier as it is the standard procedure outlined

Method PTC IMDBM WEB NCI109 REDDIT12K

GK 57.26 43.89 21.37 62.06 31.82
DGK 57.32 44.55 23.65 62.69 32.22

SP 58.24 37.01 18.16 73.00 −
DSP 60.08 39.67 22.65 73.26 −
WL 66.97 49.33 26.44 80.22 39.03

DWL 70.17 49.95 34.56 80.32 39.21
GRAPH2VEC 60.17 47.33 40.91 74.26 35.24

NETMF 56.65 30.67 19.71 51.84 23.24
GRAPHSAGE 52.17 34.67 20.38 65.09 25.01
UGRAPHEMB 72.54 50.06 37.36 69.17 39.97

UGRAPHEMB-F 73.56 50.97 45.03 74.48 41.84

Table 1: Graph classification accuracy in percent. “-” indicates that
the computation did not finish after 72 hours. We highlight the top 2
accuracy in bold.

in [Yanardag and Vishwanathan, 2015], and report the better
accuracy of the two. For (3) and (4), we try different averag-
ing schemes on node embeddings to obtain the graph-level
embeddings and report their best accuracy.

As shown in Table 1, UGRAPHEMB without fine-tuning,
i.e. using only the unsupervised “inter-graph” information,
can already achieve top 2 on 3 out of 5 datasets and demon-
strates competitive accuracy on the other datasets. With fine-
tuning (UGRAPHEMB-F), our model can achieve the best
result on 4 out of 5 datasets. Methods specifically designed for
graph-level embeddings (GRAPH KERNELS, GRAPH2VEC,
and UGRAPHEMB) consistently outperform methods designed
for node-level embeddings (NETMF and GRAPHSAGE), sug-
gesting that good node-level embeddings do not naturally
imply good graph-level representations.

3.2 Task 2: Similarity Ranking
For each dataset, we split it into training, validation, and test-
ing sets by 6:2:2, and report the averaged Mean Squared Error
(mse), Kendall’s Rank Correlation Coefficient (τ ) [Kendall,
1938], and Precision at 10 (p@10) to test the ranking perfor-
mance.

Table 2 shows that UGRAPHEMB achieves state-of-the-
art ranking performance under all settings except one. This
should not be a surprise, because only UGRAPHEMB uti-
lizes the ground-truth GED results collectively determined
by BEAM [Neuhaus et al., 2006], HUNGARIAN [Riesen
and Bunke, 2009], and VJ [Fankhauser et al., 2011].
UGRAPHEMB even outperforms HED [Fischer et al., 2015],
a state-of-the-art approximate GED computation algorithm,
under most settings, further confirming its strong ability to
generate proximity-preserving graph embeddings by learning
from a specific graph proximity metric, which is GED in this
case.

3.3 Task 3: Embedding Visualization
Visualizing the embeddings on a two-dimensional space is a
popular way to evaluate node embedding methods [Tang et
al., 2015]. However, we are among the first to investigate
the question: Are the graph-level embeddings generated by a
model like UGRAPHEMB provide meaningful visualization?

We feed the graph emebddings learned by all the methods
into the visualization tool t-SNE [Maaten and Hinton, 2008].
The three deep graph kernels, i.e. DGK, DSP, and WDL,
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Method
PTC IMDBM WEB NCI109 REDDIT12K

τ p@10 τ p@10 τ p@10 τ p@10 τ p@10
GK 0.291 0.135 0.329 0.421 0.147 0.101 0.445 0.012 0.007 0.009

DGK 0.222 0.103 0.304 0.410 0.126 0.009 0.441 0.010 0.011 0.012
SP 0.335 0.129 0.009 0.011 0.008 0.065 0.238 0.012 − −

DSP 0.344 0.130 0.007 0.010 0.011 0.072 0.256 0.019 − −
WL 0.129 0.074 0.034 0.038 0.014 0.246 0.042 0.006 0.089 0.017

DWL 0.131 0.072 0.039 0.041 0.017 0.262 0.049 0.009 0.095 0.023
GRAPH2VEC 0.128 0.188 0.697 0.624 0.014 0.068 0.033 0.127 0.008 0.017

NETMF 0.004 0.012 0.003 0.143 0.002 0.010 0.001 0.008 0.009 0.042
GRAPHSAGE 0.011 0.033 0.042 0.059 0.009 0.010 0.018 0.040 0.089 0.017

BEAM 0.992∗ 0.983∗ 0.892∗ 0.968∗ 0.963∗ 0.957∗ 0.615∗ 0.997∗ 0.657∗ 1.000∗

HUNGARIAN 0.755∗ 0.465∗ 0.872∗ 0.825∗ 0.706∗ 0.160∗ 0.667∗ 0.164∗ 0.512∗ 0.808∗

VJ 0.749∗ 0.403∗ 0.874∗ 0.815∗ 0.704∗ 0.151∗ 0.673∗ 0.097∗ 0.502∗ 0.867∗

HED 0.788 0.433 0.627 0.801 0.667 0.291 0.199 0.174 0.199 0.237
UGRAPHEMB 0.840 0.457 0.853 0.816 0.618 0.303 0.476 0.189 0.572 0.365

Table 2: Similarity ranking performance. BEAM, HUNGARIAN, and VJ are three approximate GED computation algorithms returning upper
bounds of exact GEDs. We take the minimum GED computed by the three as ground-truth GEDs for training and evaluating all the methods on
both Task 1 and 2. Their results are labeled with “∗”. HED is another GED solver yielding lower bounds. “-” indicates that the computation
did not finish after 72 hours.

generate the same embeddings as the non-deep versions, but
use additional techniques [Yanardag and Vishwanathan, 2015]
to modify the similarity kernel matrices, resulting in different
classification and ranking performance.

From Figure 2, we can see that UGRAPHEMB can separate
the graphs in IMDBM into multiple clusters, where graphs in
each cluster share some common substructures.

Such clustering effect is likely due to our use of graph-
graph proximity scores, and is thus not observed in NETMF
or GRAPHSAGE. For GRAPH KERNELS and GRAPH2VEC
though, there are indeed clustering effects, but by examining
the actual graphs, we can see that graph-graph proximity is
not well-preserved by their clusters (e.g. for WL graph 1, 2
and 9 should be close to each other; for GRAPH2VEC, graph
1, 2, and 12 should be close to each other), explaining their
worse similarity ranking performance in Table 2 compared to
UGRAPHEMB.

3.4 Parameter Sensitivity of UGRAPHEMB
We evaluate how the dimension of the graph-level embeddings
and the percentage of graph pairs with ground-truth GEDs
used to train the model can affect the results. We report the
graph classification accuracy on IMDBM.

As can be seen in Figure 3, the performance becomes
marginally better if larger dimensions are used. For the per-
centage of training pairs with ground-truth GEDs, the perfor-
mance drops as less pairs are used. Note that the x-axis is
in log-scale. When we only use 0.001% of all the training
graph pairs (only 8 pairs with ground-truth GEDs), the perfor-
mance is still better than many baseline methods, exhibiting
impressive insensitivity to data sparsity.

4 Related Work
Unsupervised graph representation learning has a long his-
tory. Classic works including NETMF [Qiu et al., 2018],
LINE [Tang et al., 2015], DeepWalk [Perozzi et al., 2014], etc.,

which typically generate an embedding for each node in one
graph. Theoretical analysis shows that many of these works
cannot handle embeddings for multiple graphs in the sense
that the node embeddings in one graph are not comparable to
those in another graph in any straightforward way [Heimann
and Koutra, 2017]. A simple permutation of node indices
could cause the node embedding to be very different.

More recently, some of the methods based on Graph
Convolutional Networks (GCN) [Defferrard et al., 2016;
Kipf and Welling, 2016a], such as VGAE [Kipf and Welling,
2016b], satisfy the desired permutation-invariance property.
Categorized as “graph autoencoders” [Wu et al., 2019], they
also belong to the family of graph neural network methods.
Although satisfying the permutation-invariance requirement,
these autoencoders are still designed to generate unsuperised
node embeddings.

Methods designed for unsupervised graph-level embeddings
include GRAPH2VEC [Narayanan et al., 2017] and GRAPH
KERNELS [Yanardag and Vishwanathan, 2015], which how-
ever are either not based on learning or not inductive. Unlike
node-level information which is reflected in the neighborhood
of a node, graph-level information is much more limited. A
large amount of graph neural network models resort to graph
labels as a source of such information, making the models
supervised aiming to improve graph classification accuracy
specifically, such as DIFFPOOL [Ying et al., 2018], CAPS-
GNN [Zhang and Chen, 2019], etc., while UGRAPHEMB
learns a function that maps each graph into an embedding that
can be used to facilitate many downstream tasks.

5 Conclusion
We present UGRAPHEMB, an end-to-end neural network
based framework aiming to embed an entire graph into an
embedding preserving the proximity between graphs in the
dataset under a graph proximity metric, such as Graph Edit
Distance (GED). A novel mechanism for generating graph-
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Figure 2: Visualization of the IMDBM dataset. From (a) to (g), for each method, 12 graphs are plotted. For (h) to (l), we focus on UGRAPHEMB:
5 clusters are highlighted in red circles. 12 graphs are sampled from each cluster and plotted to the right.

Figure 3: Classification accuracy on the IMDBM dataset w.r.t. the
dimension of graph-level embeddings and the percentage of graph
pairs used for training.

level embeddings is proposed. Experiments show that the
produced graph-level embeddings achieve competitive per-
formance on three downstream tasks: graph classification,
similarity ranking, and graph visualization.
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