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Language models (LMs) are increasingly being deployed to perform autonomous data analyses. How-
ever, their data awareness—the ability to recognize, reason over, and appropriately handle data artifacts
such as missing values, outliers, and logical inconsistencies—remains underexplored. These artifacts
are especially common in real-world tabular data and, if mishandled, can significantly compromise the
validity of analytical conclusions. To address this gap, we present Radar, a benchmark for system-
atically evaluating data-aware reasoning on tabular data. We develop a framework to simulate data
artifacts via programmatic perturbations to enable targeted evaluation of model behavior. Radar com-
prises 2980 table query pairs, grounded in real-world data spanning 9 domains and 5 data artifact
types. In addition to evaluating artifact handling, Radar systematically varies table size to study how
reasoning performance holds when increasing table size. Our evaluation reveals that, despite decent
performance on tables without data artifacts, frontier models degrade significantly when data artifacts
are introduced, exposing critical gaps in their capacity for robust, data-aware analysis. Designed to
be flexible and extensible, Radar supports diverse perturbation types and controllable table sizes,
offering a valuable resource for advancing tabular reasoning.

1. Introduction

Figure 1 | Reasoning over tabular data con-
taining data artifacts and corresponding
performance of language models.

Language models (LMs) are increasingly deployed
as autonomous data science agents, capable of per-
forming basic data analyses on tabular data, such as
summarizing trends, identifying relationships, and
manipulating data [42, 36, 60, 13]. But can we truly
rely on LMs for real-world data analysis? It remains
unclear whether they are merely repeating templated
analyses or engaging in genuine data-aware reason-
ing—making decisions based on the actual state and
structure of the dataset, much like an experienced data
scientist would (Fig. 1). This distinction is critical in
real-world settings, where data artifacts such as miss-
ing values, outliers, and logical inconsistencies are
ubiquitous, non-trivial to detect, and can significantly
affect analysis and interpretation [28, 27, 39, 23].
Understanding whether models can detect and appro-
priately respond to such artifacts—without explicit
instruction and across diverse schema and domain contexts—is key to assessing their reliability.

In high-stakes settings, such errors can lead to harmful or misleading conclusions. For example,
a patient’s electronic health record might erroneously indicate a resting heart rate of 220 bpm (an
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implausible value for an adult) due to a data entry mistake or sensor malfunction. If left uncorrected,
such an anomaly could trigger false automated alerts, lead to clinical misdiagnosis, prompt unnecessary
or risky interventions, or distort downstream clinical research.

Importantly, evaluating data awareness—the ability to detect, navigate the implications of, and
correct data artifacts—is both a practical necessity and a challenging reasoning task for language
models. It requires more than surface-level understanding of the data types or table structure; models
must apply nuanced reasoning over context (e.g., recognizing that 5 calories is implausible for a
60-minute run), units (e.g., distinguishing between kilometers and miles), statistical expectations
(e.g., identifying a resting heart rate of 220 bpm as an outlier), and inter-column relationships
(e.g., ensuring distance, duration, and speed are consistent). To succeed, models must learn the
table schema and inter-column relationships on the fly, navigate long-context inputs in large tables,
resist distractors, reason inductively from examples, identify subtle anomalies such as outliers or
missingness, and execute appropriate data analysis and interpretation in the presence of data artifacts.
Yet, despite its importance, data-aware reasoning—and how it scales with larger, more complex
tables—remains underexplored. Larger tables require models to reason over longer contexts, filter
irrelevant data, and track complex dependencies across columns and rows. These demands compound
the challenge of robust tabular reasoning.

Prior work has primarily focused on tabular reasoning or analysis execution over “clean” data
tables, where data awareness is neither required nor explicitly evaluated. While recent efforts have
explored structural perturbations—such as shuffling rows or columns [2, 71, 55], these settings
still assume well-formed data and do not require models to recognize or respond to quality issues.
Moreover, they often overlook key factors such as table size, leaving open questions about how tabular
reasoning scales with increasing input complexity. In contrast, real-world analysis rarely fits these
assumptions. It demands detecting imperfections, adapting to noisy or inconsistent inputs, and
adjusting both interpretation and analysis strategies accordingly.

In this work, we introduce the Robust And Data Aware Reasoning (Radar) benchmark (Fig. 2),
an evaluation framework designed to systematically assess the reasoning capabilities of models in the
presence of challenging and diverse data artifacts. Radar assesses the extent to which models can
correctly recognize and handle specific types of data artifacts and analyzes how this capability varies
across different models, dataset sizes, and artifact types. Radar specifically addresses five types of
data artifact common in real world data [43, 38, 16, 9, 25]: 1) Missing Data: Empty or null entries
simulating incomplete information; 2) Bad Values: Clearly erroneous or placeholder entries (e.g., -1,
9999, TEST, #REF!); 3) Outliers: Implausible extreme values that distort analysis (e.g., 220 bpm
resting heart rate); 4) Inconsistent Formatting: Variations in representing the same value (e.g., 22
lbs, 22 pounds, weight = 22); and 5) Inconsistent Logic: Cross-field contradictions violating
common-sense logic (e.g., end time before start time).

To evaluate data-aware tabular reasoning in realistic settings, we constructed Radar by crowd-
sourcing 53 diverse datasets and queries from domains like education, health, and business, focusing
on large, complex tables (§3). We implemented 260 query-specific perturbation functions to inject
realistic, context-sensitive artifacts (e.g., an implausibly high calories burned for a short walk), en-
suring that naive computations on these modified tables lead to incorrect answers. This, in turn,
supports large-scale generation of verifiable, high-quality task instances. We benchmark language
models on Radar under both direct prompting and code-agent settings (§4), revealing that while
models like o4-mini achieve 100% on clean tables aided with code execution, performance drops by
59% on perturbed ones (§5), highlighting critical limitations in only evaluating on clean data. In
summary, Radar provides a precise, scalable, objective, and systematic approach to automatically
assessing LM tabular reasoning. Our main contributions are:
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Figure 2 | Overview of Radar. Expert-written programmatic functions are used to: (1) generate
ground truth answers (via answer functions invariant to table dimensions), and (2) simulate data
artifacts by producing perturbed and recovered versions of the original table. We evaluate LMs on
perturbed tables by computing the ground-truth answer over the corresponding recovered table,
enabling a controlled and consistent evaluation across data artifact types and varying table sizes.

1. A scalable framework for data-aware QA generation. We introduce a dataset-agnostic frame-
work for automatically synthesizing thousands of high-quality, rigorously verified table QA pairs
targeting artifact-sensitive reasoning. The framework is dataset-agnostic and extensible to new
tables, larger data scales, and additional artifact types, enabling fine-grained and comprehensive
evaluation of data awareness.

2. A benchmark of expert-curated real-world data tables and expert-authored contextual per-
turbations. We construct Radar, a suite of 53 table QA tasks comprising 2980 instances across 9
application domains vetted by data science experts. Each task is paired with a library of hand-
engineered perturbation functions that inject five classes of data artifacts designed to precisely
evaluate models’ data awareness.

3. A large-scale analysis of LM data-aware reasoning uncovering implications for building real-
world data science agents. We perform a comprehensive study on how data artifacts and table
size influence the reasoning accuracy of language models. Our results uncover systematic failure
modes—including pronounced brittleness to logically inconsistent entries—and provide concrete
guidelines for developing more reliable LMs.

2. Background and Related Work

Tabular Reasoning in Language Models. Language models show promise in answering natural
language queries over structured data (i.e., table QA) [66, 59]. Existing benchmarks assess reasoning
over tabular data [66, 44, 8, 55], but typically assume clean, artifact-free tables. As a result, they
offer limited insight on how models handle imperfect real-world tables [19, 52, 43, 38]. Recent work
studied the robustness of LMs to table perturbations [2, 71, 40]. In the context of table QA, these
efforts largely involve structural modifications (e.g., row or column shuffling) or changes to cells
containing the answer. These works test whether models rely on the actual table content, or lean on
their parametric knowledge or position-based heuristics [72, 3, 34]. While valuable, these evaluations
do not focus on whether models identify and reason about data quality issues.

Radar advances this line of research by introducing perturbations aimed at evaluating a chal-
lenging and practically relevant notion of robustness: whether models can detect and appropriately
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handle data artifacts during analytical reasoning. For example, a model should recognize that a taxi
ride with a short duration but an extremely long distance is implausible—and take appropriate action
such as excluding it from a fare average calculation.1 To support such evaluations, we crowdsource
complex, domain-diverse tables and introduce schema-aware perturbations that reflect the scale,
messiness, and irregularities typical of real-world data. Moreover, little is known about how model
performance scales with table size, despite real-world data often spanning hundreds or thousands of
rows and requiring long-context reasoning. Existing benchmarks, however, typically use small tables
and do not support control over table sizes. Radar fills this gap by enabling systematic variation in
table size while holding task semantics and complexity constant, drawing inspiration from recent
long-context reasoning benchmarks [54, 69, 33, 20]. This allows precise evaluation of how table size
affects tabular reasoning performance.

Data Analysis with Language Models. Beyond table QA, LMs are increasingly being developed as
general-purpose data science agents, capable of writing code, using tools, and executing end-to-end
analyses [42, 36, 13, 60, 15], along with a wave of new benchmarks [67, 18, 21, 35, 70, 7]. However,
existing benchmarks often assume clean datasets and none systematically assess whether models
are resistant to data quality issues that precede any valid analysis, a foundational first step for
reliable inference and reproducibility [17, 57]. Radar complements these efforts by introducing
schema-aware data imperfections—capturing real-world challenges such as missing data, outliers,
formatting irregularities, and logical inconsistencies. This enables a targeted evaluation of whether
models are truly data-aware: capable of detecting and responding to the kinds of imperfections that
frequently compromise real-world data analyses.

3. The Radar Benchmark

We design Radar around three core goals: (1) Enable objective evaluation—ensuring that model
performance is assessed reliably, transparently, and deterministically through unambiguous tasks
and objective evaluation criteria. This contrasts with language model based evaluation, which can
introduce stochasticity and undesirable biases [65, 30]; (2) Support realistic and challenging
tabular reasoning—designing tasks that reflect real-world data imperfections and are sufficiently
difficult to differentiate model capabilities and meaningfully measure progress; and (3) Isolate the
effects of table size and artifact type—enabling fine-grained analysis of how specific data artifacts
or table size impact reasoning, without introducing confounding factors. These goals are supported
by our task generation framework (§3.1) and rigorous data collection procedure (§3.2).

3.1. Data Artifact Generation and Evaluation Framework

Problem Definition. We evaluate the robustness of language models when answering data analysis
questions over perturbed tables containing realistic artifacts. To do so, we crowdsource high-quality,
complex data tables and create programmatic functions to introduce data artifacts (Fig. 2).

Let ) denote a clean source table—unperturbed, logically consistent, and free from data artifacts.
From ), we derive a perturbed version )> by introducing targeted artifacts, and a corresponding
cleaned (recovered) version )@ that reflects the intended correction of those artifacts. The set of
cleaning operations is denoted by Δ) = )> − )@ and may involve dropping rows (e.g., removing a row
containing invalid values such as a negative fare) and/or overwriting cell values (e.g., recovering a
missing BMI value from the corresponding height and weight columns).

1To support objective evaluation, we design tasks such that there is an objective correct action.
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Figure 3 | Data Artifact Types. Given a table ) without artifacts and a query & (e.g., “What is the
average fare per mile?”), we perturb tables to simulate different data artifacts.

Given a natural language query & (e.g., “What is the average fare per mile?”) and a table ), let
5 : (&, )) ↦→ � denote a programmatic function that computes the correct answer � by applying the
logical operations implied by & over the contents of ). We assume that & is clear, unambiguous, and
specifies an objective question whose answer can be deterministically computed from ).

The ground truth answer is defined as � = 5 (&, )@). We assess robustness by checking whether
the model’s prediction satisfies LM(&, )>) = �. In other words, obtaining the correct answer on )>
requires recognizing, reasoning over, and cleaning data artifacts (executing Δ)) such that a model
could compute a correct answer over the recovered table )@ .

Programmatic Perturbations. Programmatic perturbations introduce the same type of data artifacts
across tables of varying sizes sharing the same schema. Combined with the answer function, this
enables automatic generation of many high-quality tasks with verifiable ground-truth answers, thus
allowing for controlled evaluation of how models’ data awareness reasoning varies with table sizes.

We define a programmatic perturbation function as 6 : (), &) ↦→ ()>, )@). Given a clean table ) and
a query &, the function 6 generates a perturbed table )> by introducing artifacts targeted with respect
to &, along with )@, the recovered table after handling the artifact. Each perturbation is constructed so
that directly applying 5 (&, )>) yields an incorrect or undefined result (e.g., due to execution errors),
thus requiring the artifact to be addressed for correct reasoning.2 For example, if & requires filtering
for rides longer than 6 miles, the perturbation will ensure it affects at least rows where the distance
exceeds 6 miles.

Data Artifact Types. Using 6, we programmatically introduce the following data artifact types:

1. Missing Data: Replacing valid cell entries with empty values (e.g., an empty string).
2. Bad Values: Injecting clearly erroneous or placeholder values that reflect data entry mistakes or

system artifacts (e.g., -1, 9999, TEST, #REF!).
3. Outliers: Inserting extreme, contextually implausible values into numeric fields (e.g., 220 bpm

for resting heart rate, or a taxi fare of 10,000 USD for a short ride).
4. Inconsistent Cell Formatting: Variations in units, formats, or styles (e.g., 22 lbs, 22 pounds,

weight = 22) or inconsistent dates/casing that represent the same data.
5. Inconsistent Logic: Introducing contradictions across table cells that violate internal consistency
2While our framework supports multiple cleaned tables to reflect different valid ways of handling a perturbed table, we

refer to a single cleaned table in our description for simplicity.
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(e.g., an end timestamp earlier than the start time, a mismatched BMI value given the height and
weight, or a runner’s rank that does not correspond with their finish time), requiring multi-column
and/or multi-row reasoning to detect.

In this work, we study data artifact types independently (e.g., Fig. 3). However, the answer and
perturbation functions ( 5 and 6) are flexible and can easily extend to incorporate additional artifact
types or combinations of artifact types within a single table.

Scalability Across Table Sizes. Task complexity may vary with table size as larger tables require
operating over a larger context. To support different table sizes, we define the core schema C as the
set of columns comprising (i) the fields required to answer the query &, and (ii) any auxiliary fields
used to introduce perturbations.

Both the perturbation function 6 and the answer function 5 are programmatically defined to
operate over tables with varying numbers of rows and columns, as long as the required fields in C
are present. Given a cleaned table ) (<,;) with < rows and ; columns (with ; ≥ |C|), 6 generates a
perturbed version ) (<,;)> and a recovered counterpart ) (<@≤<,;)@ . The function 5 computes the answer
� consistently across these variants, provided that C is preserved.

As a result, both the perturbations and corresponding ground truth function remain agnostic
to table size by design, as long as tables of sufficient size can be collected or generated. This
scalability enables data awareness evaluations to be systematically extended across diverse table
sizes and expanded schemas. In this setup, the perturbation logic remains fixed, and the pri-
mary axis of variation is table size—whether in the number of rows or the number of auxiliary
columns—allowing for consistent and controlled evaluation across different table configurations.
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Figure 4 | Data Statistics of Radar.

3.2. Constructing Radar

Crowdsourced Data Tables. To build a challenging
benchmark grounded in real-world data analysis scenar-
ios, we recruited 12 data science experts, each holding
graduate degrees in computer science, statistics, and
related fields. Experts were encouraged to draw on their
personal experiences to design examples of logical in-
consistencies and analytical failures that frontier LMs
struggle with.

Next, experts curated clean, publicly available source
tables, each denoted as )A, containing at least 500 rows
and 20 columns, along with an associated natural lan-
guage query &. See Appendix A for data collection
instructions and dataset details. For each selected table,
experts ensured that the data was “clean”—free from
pre-existing artifacts or inconsistencies. In many cases,
this involved manually cleaning, wrangling, and normal-
izing data to ensure a blank canvas before introducing
controlled perturbations. Each ()A, &) pair defines a
unique task in Radar and includes annotations for the
relevant core schema columns C.
Expert Written Programmatic Functions. For each
collected task, a dedicated team of experts authored the
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corresponding answer functions ( 5) and perturbation functions (6), with one 6 defined for each
data artifact type (e.g., missing data, outliers etc.), where applicable given the core schema C. Each
perturbation function 6 is programmatically implemented in Python and affects a minimum of one
row or cell to ensure meaningful change, but is limited to at most 10% of rows to preserve the
overall integrity of the table and prevent more significant changes to the original data distribution.
All functions, tables, and annotations underwent multiple rounds of expert code review and cross-
validation to ensure correctness and logical consistency across table sizes and perturbation instances.

Dataset Tasks Instances Tokens (K) Cols

Radar 53 2,980 [2,4,8,16] [5,10,20]
Radar-T 53 313 8 10
Radar-S 10 720 [2,4,8,16] [5,10,20]

Table 1 | Summary of Radar Dataset Splits.

Generating Tables and Task Instances.
To support controlled evaluation of data
awareness across table sizes, we use
our framework to generate table vari-
ants from each clean source table )A.
We measure table size in token count
g ∈ 2K, 4K, 8K, 16K, using the Gemma
3 tokenizer [14] applied to the CSV-
serialized form of the table.3 To explore the impact of table dimensions (i.e., row-to-column ratio),
we additionally control the number of columns, 2 ∈ 5, 10, 20. Given )A, for each (g, 2) combination,
we select the number of rows ' such that the resulting table with 2 columns, contains approximately g
tokens (i.e., ' = argmin@ |tok()A, @, 2) − g|). Here, tok()A, @, 2) denotes the token count for a sub-sample
of )A with @ rows and 2 columns. All generated tables from )A have the same core schema C. Once
tables are selected across these configurations, we apply our perturbation functions (across data
artifact types) to create perturbed data tables. A task instance in Radar is thus defined by a tuple
consisting of the task, token-based table size, column count, and data artifact type.

Dataset Summary. Figure 4 and Table 1 summarize our benchmark. Radar comprises 53 expert-
curated tasks derived from 27 source tables spanning 9 domains such as education, STEM, and health
(details in Appendix A). Among 53 tasks, 6 table artifact variants (5 perturbed, 1 clean), 4 table
sizes, and 3 column counts (yielding 53 × 6 × 4 × 3 = 3816 possible combinations), Radar includes
2,980 systematically generated task instances4 and 260 expert-written perturbation functions. To
encourage adoption and enable more tractable evaluation while maintaining sufficient statistical power
to distinguish model performance, we curate two benchmark subsets, also used in our evaluation
(§4): (1) Radar-T, focuses on capturing maximal variation across tasks and data artifacts; and
(2) Radar-S which isolates the influence of table size and dimensionality. Radar-T includes
all tasks and their associated data artifact variants, standardized to tables with 10 columns and
approximately 8K tokens. Radar-S is a subset of 10 tasks with complete artifact variants and all
table size configurations.

4. Experiments

Models. We evaluate a range of models on data awareness including open-source models, and popular
general-purpose and reasoning models. For general-purpose models, we include GPT-4.1, Gemini
2.5 Flash, Gemma 3 27B [14], and DeepSeek-V3 [11]. For reasoning models, we include o3-mini,
o4-mini,5 Gemini 2.5 Flash with thinking on, Gemini 2.5 Pro, and DeepSeek-R1 [12]. We evaluate
all models on Radar-T. To study the impact of table size on performance, we evaluate Gemini 2.5
Flash, Gemini 2.5 Flash with thinking on, GPT-4.1, and o4-mini on Radar-S.

3Row and column counts miss variation in cell content, ranging from single-token integers to paragraphs.
4Some combinations of artifact, table size, and column count were infeasible due to query/table constraints.
5o4-mini and o3-mini are evaluated with reasoning effort set to high
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Direct Prompting Code Agent
Model Cln Miss Bad Out Fmt Log Cln Miss Bad Out Fmt Log
General-purpose Models
Gemma3 27B 1.9 3.8 1.9 0 1.9 1.8 75.5 20.8 9.4 8.3 15.1 14.3
DeepSeek-V3 1.9 5.7 3.8 4.2 3.8 0.0 96.2 35.8 41.5 31.2 54.7 25.0
Gemini 2.5 Flash 15.1 7.5 11.3 6.2 13.2 8.9 84.9 28.3 26.4 27.1 54.7 17.9
GPT-4.1 17.0 13.2 11.3 6.2 28.3 12.5 98.1 37.7 41.5 60.4 73.6 30.4
Reasoning Models
Gemini 2.5 Flash Thinking 39.6 17.0 20.8 22.9 22.6 16.1 88.7 41.5 35.8 56.2 47.2 35.7
DeepSeek-R1 34.0 22.6 32.1 25.0 32.1 19.6 84.9 39.6 47.2 64.6 64.2 48.2
o3-mini (high) 73.6 37.7 37.7 18.8 66.0 17.9 75.5 43.4 43.4 33.3 79.2 25.0
Gemini 2.5 Pro 71.7 50.9 56.6 47.9 56.6 42.9 84.9 73.6 54.7 64.6 73.6 44.6
o4-mini (high) 83.0 49.1 58.5 56.2 73.6 32.1 100 50.9 54.7 83.3 79.2 41.1

Table 2 | Zero-shot Performance by Data Artifacts. Values are Exact Match accuracy (%). Columns
are grouped by the direct prompting and code agent baselines. Cln=Clean, Miss=Missing Data,
Bad=Bad Values, Out=Outliers, Fmt=Inconsistent Formatting, Log=Inconsistent Logic.

Baselines. We evaluate models using two zero-shot baseline approaches: direct prompting, where
LMs answer questions in a single turn via textual reasoning given the input prompt [2, 34], and
code agent, where LMs are equipped with a Python shell tool to interact with the data table and
observe execution outputs. The code agent is based on existing tool-use agents [68, 34]. In our
experiments, we limit the number of interaction steps to five, following [34]. In practice, we do not
observe this limitation affecting model performance. Importantly, for both baselines in the system
prompt, we explicitly instruct the model to pay attention to all five data artifact types during
its reasoning but without referring to any specific table instance. In addition, the entire table is
serialized in CSV format within the prompt. Full prompts and baseline implementation details are
included in Appendix B.

Metrics. For all experiments, we report Exact Match accuracy. For string, integer, and list answers,
the prediction must match the ground truth exactly. For floating-point values, predictions are con-
sidered correct if they fall within ±1 unit of the least significant decimal place of the ground truth.
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Figure 5 | Frontiermodels struggle with logically
inconsistent tables, despite clean-table success.
Exact match scores on logically inconsistent tables
on tasks where the model answered correctly on
the clean table (indicated by N).

5. Results & Discussion

RQ1: How do models handle different types
of data artifacts? Table 2 summarizes the zero-
shot exact match accuracy across different ar-
tifact types. In direct prompting, most mod-
els struggle, with only the strongest reason-
ing models—such as o4-mini and Gemini 2.5
Pro—consistently surpassing 50% accuracy. o4-
mini performs reasonably well on clean, unper-
turbed tables and artifacts involving bad val-
ues, outliers, and formatting inconsistencies,
while Gemini 2.5 Pro is comparatively better
at handling logical inconsistencies and miss-
ing values. General-purpose models, particu-
larly open-source ones, tend to perform less
well—often scoring below 20% and 6%, respec-
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with the same token count. In contrast, code agent performance (right) remains relatively stable
across different token and column counts.

tively—highlighting the overall difficulty of Radar as a tabular reasoning benchmark.
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Introducing code execution leads to performance gains
across all models, particularly for general-purpose models and
those less effective with direct prompting. With access to code,
all models perform reasonably well on clean tables. However,
significant performance gaps persist—especially for general-
purpose models—when faced with tables containing artifacts.
This suggests data awareness remains a core challenge even
with code. Qualitative analysis shows that code execution en-
ables models to bypass deep understanding by applying generic
routines (e.g., dropping rows with missing data) without nec-
essarily identifying the exact issues (see Appendix C for ex-
amples). These findings reveal a persistent disparity in models’
ability to detect and recover from data artifacts, raising the
question whether analysis agents should incorporate elements
of specialized reasoning models.

RQ2: Do models maintain performance on perturbed ta-
bles, even after succeeding on clean ones? We investigate
whether models can generalize their success from clean tables
to perturbed versions of those same tables. Focusing on just
logically inconsistent tables as an example, for the strongest
performing models, we select the subset of tasks it answers
correctly on the clean table variant and evaluate accuracy on
the associated logically inconsistent table. Since clean-table performance varies across models, each
is evaluated on a different subset of examples. As shown in Figure 5, performance consistently drops
across all models. This trend holds for both direct prompting and code agent baselines, suggesting
that current models, even when equipped with code execution capabilities, are not robust to subtle
logical inconsistencies. We report performance degradation for other artifact types in Appendix D.

RQ3: How does performance scale with table size? Figure 6 shows the exact match accuracy for
both direct prompting and code agents for different table sizes, measured in token count as well
as different number of columns given the same token count (i.e., wider vs. narrower tables). For
direct prompting, we observe that performance decreases substantially as the table size increases and
consistent across models. By 16K tokens, exact match accuracy drops to nearly zero. Interestingly,
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performance also declines as the number of columns decreases—that is, models perform better on
wider tables (with fewer rows) at the same token count. Qualitative inspection of model reasoning
traces indicate that models tend to go row by row when inspecting and performing calculations on the
data table (see Appendix C for examples). This means that the number of tokens used for computation
scales linearly with the number of rows (generally observed in Fig. 7a). In contrast, code agents
exhibit stable performance as table size and width vary. Their ability to offload computations and
focus on intermediate reasoning allows them to remain largely unaffected by table dimensions. These
findings highlight the benefits of token-efficient schema abstraction and the need for programmatic
strategies to surface data artifacts. Without such mechanisms, even frontier language models struggle
under the dual pressures of input scale and noise.

Model Direct Prompting Code Agent

Derivation Row Drop Derivation Row Drop

Gemini 2.5 Pro 50.5 47.1 56.2 62.4
DeepSeek-R1 22.9 26.5 31.4 66.7
o3-mini 31.4 25.8 35.6 37.3
o4-mini 47.6 49.0 44.8 67.6

Table 3 | Performance on Value Derivation vs. Row
Dropping. Exact match (%) on Radar-T instances re-
quiring either (1) deriving or replacing cell values (exclud-
ing formatting data artifacts, N=102), or (2) dropping
rows (N=105).

RQ4: How does model performance
vary across different types of table
correction behaviors? To understand
how well models handle different types
of required corrections, we examine per-
formance on Radar-T, split into task in-
stances that either (1) require the model
to derive or replace cell values based on
information from other rows or columns
(i.e., excluding inconsistent formatting),
or (2) drop rows entirely when such
derivation is not possible. Table 3 shows
that among the top-performing models
under direct prompting, some perform slightly better on derivation tasks, while others do better on
row dropping, with no consistent trend. However, code agents lead to general improvements in row
drop performance compared to derivation. In contrast, value derivation tasks remain challenging
even for code agents, suggesting standardized code operations do not make it substantially easier to
surface multi-column/row logical inconsistencies.

Figure 8 | Exact match accuracy (aggregated across perturbed
tables, N=260) on Radar-T: (a) Accuracy as a function of
LM output (completion + reasoning) tokens. Each point
represents a specific model and baseline. (b) Accuracy on o4-
mini with increasing thinking budget (Low, Medium, High).

RQ5: How does test-time compute
affect performance? We analyze the
number of LM output (completion
+ thinking) tokens and its relation-
ship to performance. Under direct
prompting, models generally perform
better with more test-time compute
(Fig. 8a). However, this is not a di-
rect relationship. o4-mini, for exam-
ple, performs better then o3-mini and
while using less tokens. In contrast,
when equipped with code, additional
output tokens offer less optimal gains.
This is observed in both the compet-
itive performance of general-purpose
models (Fig. 8a) and on o4-mini as
we increase thinking budget (Fig. 8b).
Developing systems that better coor-
dinate between text tabular reasoning and code execution could significantly improve performance
and efficiency under token constraints.
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Limitations and Future Work Radar currently supports a fixed set of perturbation types, each
introduced independently to enable controlled and comprehensive evaluation. While these perturba-
tions reflect common data artifacts, they are not exhaustive (e.g., sampling bias artifacts). In addition,
to support objective answers, Radar is scoped to a fixed set of operations for correctly handling
data artifacts with exact match as an evaluation. This design excludes scenarios where multiple
plausible corrections exist or where more complex reasoning is required [57]. Nevertheless, the
framework underlying Radar—which leverages programmatic functions to generate perturbed and
corresponding recovered tables—is general and extensible to accommodate these limitations. The
framework can include additional artifact types and allows for the combination of multiple artifact
types within a single table. Future work can also build on this framework by expanding the space
of corrective actions—e.g., incorporating more flexible success criteria [18] or accepting a broader
range of valid recovered tables for a given perturbation.

6. Broader Impact

Language models are increasingly used in domains like healthcare, finance, and science, where they
are expected to perform autonomous analyses of tabular data. However, our findings underscore that
current models are not reliably robust to common data imperfections pervasive in real-world datasets.
This vulnerability can lead to misleading conclusions or biased decisions, potentially amplifying
harms in high-stakes applications.

Radar aims to address this by providing a structured benchmark for evaluating how well models
handle these real-world data artifacts. By simulating a range of data imperfections and varying table
sizes, it helps surface critical failure modes and guide the development of more robust, data-aware
systems. However, we caution against overreliance on benchmark performance as a stand-in for
real-world readiness. While Radar enables controlled evaluation, optimizing solely for benchmark
success may produce brittle models that struggle in more complex or nuanced scenarios. We advocate
using it as a diagnostic tool, extending the framework to encompass broader data scenarios, and
pairing it with real-world testing and human evaluation. Overall, we hope this work promotes more
reliable and transparent use and evaluation of language models in data-driven tasks, while fostering
awareness of the limitations and risks involved.

7. Conclusion

We present Radar, a benchmark for evaluating data-aware reasoning in language models across
varying table sizes. By programmatically injecting realistic data artifacts, Radar exposes critical
gaps in model robustness. Our experiments show that while models perform well on clean tables,
their performance degrades substantially in the presence of data artifacts. Although code execution
can assist with certain computations, it is not a comprehensive solution. Our findings underscore the
importance of designing agents that balance token efficiency with robust, data-aware reasoning.

11
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A. Dataset Details

Data science experts were recruited from a large data-driven software company. Since one of our
key contributions is the corpus of tasks, we invited our experts to be co-authors of this paper. Table 4
summarizes the original source datasets in Radar. Table 5 summarizes each task. Below, we provide
a simplified but complete version of the original task construction instructions. A second team of
experts manually reviewed all source tables and queries to ensure instructions were adequately
followed.

Instructions for Collecting Source Tables

Come up with a task involving a query, clean data table, and perturbed data table that frontier
language models would get wrong when the data is perturbed.
To construct a task instance in our benchmark, please follow these steps:

1. Dataset Selection

• Find a real-world tabular dataset (e.g., NBA Stats 2023–24).
• The data table should contain at least 500 rows and ideally at least 20 columns.
• With the data table you also need to identify a query on the data coupled with a note of a

logical inconsistency on the dataset.

2. Clean Data

• Explore and wrangle the dataset such that it is free of data artifacts. Data artifacts are ...
• If the original source table is less than 20 columns, generate relevant and consistent

additional columns until there are at least 20.

3. Return Data Sources
Return the following data which constitute a full task

• data.csv – cleaned table relevant to the query
• metadata.yaml – containing the query and other relevant metadata. See below example.
• Document any inconsistent logic perturbation in the logic_perturbation_note field.

Example metadata.yaml:
```yaml
task_id : nba -player -least -3p-made
query : ' Among players averaging >= 10 PPG, who made the fewest 3- pointers ?'
query_cols : [' Player ', '3P']
minimum_columns : ['3P', '2P', 'FT', 'PTS']
id_columns : [' Player ']
dataset_source : ' https :// www . kaggle . com/ datasets / vivovinco /2023 -2024 - nba -

player - stats '
logic_perturbation_note : ' Break consistency in 2*2P + 3*3P + FT != PTS for

some rows.'
```
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ID Dataset Src License

D01 2021 Green Taxi Trip Data [10] Public Domain
D02 2014-15 to 2017-19 NYC Regents Exam Results - Public [41] Public Domain
D03 Emissions from Industrial Facilities in Queensland - 2004 [45] CC BY 4.0
D04 Traffic Violations [37] Public Domain
D05 Tracking data, Subject (a) MC Motion [26] CC BY 4.0
D06 Fuel Economy Data [63] Public Domain
D07 Outpatient Illness and Viral Surveillance [6] Public Domain
D08 Movies Bechdel Test [46] CC0 1.0
D09 Registered Nurses [47] CC0 1.0
D10 Ultra Trail Running [48] CC0 1.0
D11 Board Games [49] CC0 1.0
D12 Hollywood Age Gaps [50] CC0 1.0
D13 Olympics Athletes and Medals [51] CC0 1.0
D14 Ethnic group (England and Wales) 2011 [61] UK OGL
D15 Household Composition by Number of bedrooms 2011 [62] UK OGL
D16 Algal Pigment Concentrations in Ross Sea [4] CC BY 4.0
D17 Eelgrass Biomass and Diversity (ZEN) [5] CC BY 4.0
D18 Framingham Heart Study Dataset [24] CC0 1.0
D19 UAE Cancer Patient Dataset [31] MIT
D20 FitBit Fitness Tracker Data [1] CC0 1.0
D21 Smart Farming Sensor Data [56] Apache 2.0
D22 World’s Cities Temperature [22] CC0 1.0
D23 Udemy Finance Courses [29] CC0 1.0
D24 Sales Data [53] CC0 1.0
D25 IBM HR Analytics [58] DbCL v1.0
D26 Football Expected Goals [32] CC BY
D27 2023-2024 NBA Player Stats [64] CC BY 4.0

Table 4 | Summary of Original Source Data.
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Task ID Task Summary Src

actor-age-gaps Age gap when male actor is 15+ years older D12
actor-couples-under-35 Movies with couples averaging < 35 years old D12
board-games-min-players Games requiring 2+ players, supporting 5+ D11
board-games-min-playtime Avg min playtime of 2000s board games D11
board-games-num-trades Games with >4% trade intention rate D11
car-co2 Avg CO2 emissions (2018-2023 models) D06
daily-activity-distance Mins per km during moderate activity D20
daily-activity Proportion of distance in moderate+ activity D20
employee-years Employees 35+ years old with 5+ tenure D25
england-wales-ethnicity 7th highest Black Caribbean population D14
england-wales-housing-bedroom-count Total bedroom count estimation D15
england-wales-housing Lone parents in 1-2 bedroom homes (%) D15
farming-crop-yield-growth-duration-2024 Soybean growth duration in days D21
football-european-league-goal-diff Expected vs actual goals difference (top teams) D26
football-european-league Total wins among top 5 teams D26
influenza-like-illness Median ILI cases (ages 25-64) D07
movies-intl-gross Avg gross for 5 longest movies D08
movies-rank-shift Budget rank changes (nominal vs adjusted) D08
movies-roi Avg return on investment ratio D08
nba-player-least-3p-made Fewest 3PT among 12+ PPG scorers D27
nba-players-avg-stocks Players averaging >1 steals+blocks D27
nba-players-best-shooters Top 5 in both shooting efficiency metrics D27
northern-hemisphere-eelgrass-habitats Total USA salinity measurements D17
nurses-hourly-salary Avg median hourly nurse salary D09
nurses-salary-difference 90th vs median salary difference D09
nurses-state-employees Avg nurses in high-wage states D09
nyc-green-taxis-passengers Total passenger count D01
nyc-green-taxis-rates Avg fare per mile D01
nyc-green-taxis Trips during top duration hours D01
nyc-regents-exam-scores-2 High vs low score distribution difference D02
nyc-regents-exam-scores-borough Passing students in largest test borough D02
nyc-regents-exam-scores Passing students in most common school type D02
olympics-country Medals per Games for top team D13
olympics-gold-winners Avg age of gold medalists D13
olympics-medal-winners Highest medal point total D13
pet-respiratory-motion Avg velocity between timestamps D05
physical-health-exam-bmi Avg BMI of male non-smokers D18
physical-health-exam-rhr Low heart rate difference by age group D18
queensland-water-emissions Weighted facility location average D03
ross-sea-algal-pigment Chlorophyll c2 at median chlorophyll a D16
sales-2 Q4 total order quantity D24
sales Avg sales per order D24
traffic-violations-speeding Avg mph over limit for severe violations D04
traffic-violations Avg vehicle age in violations D04
uae-cancer-patient-death Non-deceased patient count D19
uae-cancer-patient Patients diagnosed in latter half-year D19
udemy-classes-price Highly discounted expensive courses D23
udemy-classes-rating Courses rated above 4.1 D23
udemy-classes Avg reviews for recent courses D23
ultra-trail-races-morning-finishers Racers finishing before noon D10
ultra-trail-races-rank Avg age of top 5 finishers D10
ultra-trail-races Avg finish time in minutes D10
weather-city-mixup Feb temp gap: warmest AU vs US cities D22

Table 5 | Summary of Dataset Tasks

20



Radar: Benchmarking Language Models on Imperfect Tabular Data

B. Prompts and Experiment Details

We evaluate all models with a temperature of 0 and default settings, unless otherwise specified. Our
evaluation includes the following OpenAI models: o4-mini-2025-04-16, o3-mini-2025-01-31,
and gpt-4.1-2025-04-14. We also assess gemini-2.5-flash-preview-04-17, both with and
without "thinking" enabled, and gemini-2.5-pro-preview-05-06.

For the direct prompting baseline, we follow [55], adding instructions that encourage the model
to produce a clearly extractable final answer. For the code agent baseline, we adopt the high-level
tool design principles of [68], introducing two commands: python for executing code and done for
submitting the final answer. We use the Langfun Python library6 to interface with language model
APIs and execute generated code. Below, we include the prompts used for both the direct prompting
and code agent baselines.

Direct Prompting Baseline

System prompt:
You are an expert-level data scientist. Your job is to answer a data analysis question in rigorous manner
given a data table. In your analysis:

• Carefully address

1) Missing data: empty or null entries simulating incomplete information.
2) Bad values: clearly erroneous or placeholder entries (e.g., -1, 9999, TEST, #REF!, etc.).
3) Outliers: implausible extreme values that distort analysis (e.g., 220 breathing rate per minute).
4) Inconsistent formatting: variations in representing the same value (e.g., 22 lbs, 22 pounds,

weight = 22).
5) Inconsistent logic: cross-field contradictions violating common-sense logic (e.g., end time before

start time).

• Attempt to safely recover or correct flawed data when reasonable based on the existing data. If data is
irrecoverable or suspect, discard the row.
• Do NOT write or execute any code. Focus purely on logical reasoning and analytical judgment.

You must conclude with your most reasonable answer.
When you provide the final answer, please use the prefix "The answer is:" without any modification, and
provide the answer directly, with no formatting, no bolding, and no markup. For instance: "The answer
is: 42" or "The answer is: yes". If the question asks for a list of values, then the answer should be a
comma-separated list of values, without any formatting, no bolding, and no markup. For instance: "The
answer is: 42, 43, 44" or "The answer is: yes, no".

User:
Data:

6https://github.com/google/langfun
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EXAMPLE TABLE

race_year_id ,race,time, time_in_seconds , runner
68140 , Millstone 100,26H 35M 25S, 95725.0 , VERHEUL Jasper
68140 , Millstone 100,27H 0M 29S, 97229.0 , MOULDING JON
68140 , Millstone 100,28H 49M 7S, 103747.0 , RICHARDSON Phill
68140 , Millstone 100,30H 53M 37S, 111217.0 , DYSON Fiona
68140 , Millstone 100,32H 46M 21S, 117981.0 , FRONTERAS Karen
68140 , Millstone 100,32H 46M 40S, 118000.0 , THOMAS Leigh
68140 , Millstone 100,33H 30M 1S, 120601.0 , SHORT Deborah
68140 , Millstone 100,33H 33M 23S, 120803.0 , CROSSLEY Catharine
68140 , Millstone 100,34H 54M 16S, 125656.0 , BUTCHER Kent
68140 , Millstone 100,34H 59M 39S, 125979.0 , Hendry Bill
68140 , Millstone 100,34H 59M 44S, 125984.0 , Barnard Andrew
68140 , Millstone 100,35H 19M 52S, 127192.0 ,PAGE Mark
68140 , Millstone 100,35H 34M 33S, 128073.0 ,O' DONOGHUE Katie
71873 , ElbrusWorldRace ,29H 36M 14S, 106574.0 , ROSTOVTSEV Artem
71873 , ElbrusWorldRace ,33H 6M 45S, 119205.0 , Yakimov Semyon
71873 , ElbrusWorldRace ,36H 18M 2S, 130682.0 , Bolomozhnov Maksim
71873 , ElbrusWorldRace ,38H 4M 32S, 137072.0 , KUPRYUKHIN Denis
71873 , ElbrusWorldRace ,38H 4M 32S, 137072.0 , MITUSOV Viktor
71873 , ElbrusWorldRace ,40H 2M 34S, 144154.0 , OGURTSOV Aleksandr
...

Based on the given table, answer the following question:

EXAMPLE QUESTION

In this dataset of ultra trail running race results, what is the average finishing time in minutes
across all rows in the dataset? Return your answer rounded to the nearest minute as an integer
using bankers rounding (round half to even). Examples: round(2.5)→ 2, round(3.5)→ 4,
round(4.3)→ 4, round(4.7)→ 5.

Code Agent Baseline

System prompt:
SETTING:
You are an expert-level data scientist. Your job is to answer a data analysis question in rigorous manner
given a data table. In your analysis:

• Carefully address

1) Missing data: empty or null entries simulating incomplete information.
2) Bad values: clearly erroneous or placeholder entries (e.g., -1, 9999, TEST, #REF!, etc.).
3) Outliers: implausible extreme values that distort analysis (e.g., 220 breathing rate per minute).
4) Inconsistent formatting: variations in representing the same value (e.g., 22 lbs, 22 pounds,

weight = 22).
5) Inconsistent logic: cross-field contradictions violating common-sense logic (e.g., end time before

start time).

• Attempt to safely recover or correct flawed data when reasonable based on the existing data. If data is
irrecoverable or suspect, discard the row.

You will be working within a Python shell and can use the following commands to answer the question.

AVAILABLE COMMANDS:
python :

docstring : Execute Python code within a persistent Python shell . The shell
maintains

state across executions , so variables and imports from previous runs
remain available .

When first using this command , the data table is provided as a global
variable
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named `df `, and `pandas ` has already been imported as `pd `.
arguments :
- name: code

arg_type : str
description : The Python code to execute .
required : true

demonstration : " ```\ ncommand : python \ nkwargs :\n code: <arg value >\n```"
done:

docstring : Indicate that we arrived at the final answer and provide the
answer .

Use this command only when you have arrived at the final answer .
arguments :
- name: answer

arg_type : str
description : The final answer to the question . Do not apply any formatting

, bolding ,
or markup . If the question asks for a list of values , then the answer

should
be a comma - separated list of values (e.g., '42, 43, 44')

required : true
demonstration : " ```\ ncommand : done\ nkwargs :\n answer : <arg value >\n```"

RESPONSE_FORMAT:
Each response must include:

1) A DISCUSSION field — where you will methodically break down the reasoning process,
illustrating how you arrive at conclusions and decide what to do next.

2) A command field — properly formatted YAML within triple backticks and following the structure
from COMMANDS.

Important rules:

- Always include exactly one DISCUSSION and one command block.
- Ensure the command block is properly formatted YAML with proper indents and newlines (see the
example below).

For example, given a question asking for the average income. You might respond:

DISCUSSION
Let’s think step by step. We need to first find the average income of the population. We can do this by
summing up the income column and dividing by the number of rows.
```yaml

command : " python "
kwargs :

code: |-
income_avg = df[' income '].sum () / len(df)
income_avg

```

User:
Begin!

Data table (stored in a pandas dataframe named ‘df‘):
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EXAMPLE TABLE

RideID , payment_type , lpep_pickup_datetime , lpep_dropoff_datetime , passenger_count , trip_distance ,
tolls_amount , mta_tax , start_day_of_week , store_and_fwd_flag

239022 ,2.0, 04/10/2021 11:11:55 AM, 04/10/2021 11:18:14 AM,1.0,1.1,0.0,0.5, Saturday ,N
926728 ,1.0, 11/27/2021 01:13:13 PM, 11/27/2021 01:21:26 PM,1.0,1.77,0.0,0.5, Saturday ,N
761139 ,1.0, 10/06/2021 12:13:08 AM, 10/06/2021 12:36:37 AM,1.0,4.59,0.0,0.5, Wednesday ,N
701071 ,2.0, 09/24/2021 05:03:11 PM, 09/24/2021 05:33:50 PM,1.0,3.67,0.0,0.5, Friday ,N
700330 ,1.0, 09/24/2021 12:32:02 PM, 09/24/2021 01:01:23 PM,1.0,6.43,0.0,0.5, Friday ,N
676804 ,1.0, 09/13/2021 03:12:04 PM, 09/13/2021 03:25:17 PM,17.0,2.23,0.0,0.0, Monday ,N
245344 ,1.0, 04/14/2021 06:00:15 PM, 04/14/2021 06:07:14 PM,1.0,1.45,0.0,0.5, Wednesday ,N
763937 ,1.0, 10/07/2021 08:52:44 AM, 10/07/2021 09:18:10 AM,1.0,2.38,0.0,0.5, Thursday ,N
906875 ,1.0, 11/19/2021 08:13:35 AM, 11/19/2021 08:25:17 AM,32.0,1.3,0.0,0.5, Friday ,N
452863 ,1.0, 06/30/2021 07:48:41 AM, 06/30/2021 07:58:07 AM,1.0,1.4,0.0,0.5, Wednesday ,N
799361 ,2.0, 10/21/2021 08:11:35 PM, 10/21/2021 08:25:35 PM,1.0,2.7,0.0,0.5, Thursday ,N
778926 ,1.0, 10/13/2021 04:48:46 PM, 10/13/2021 05:04:11 PM,1.0,1.94,0.0,0.5, Wednesday ,N
701648 ,2.0, 09/24/2021 09:41:56 PM, 09/24/2021 09:46:04 PM,1.0,0.68,0.0,0.5, Friday ,N
658773 ,1.0, 09/03/2021 06:04:46 PM, 09/03/2021 06:31:10 PM,1.0,6.81,6.55,0.5, Friday ,N
1011851 ,1.0, 12/16/2021 08:04:25 PM, 12/16/2021 08:17:31 PM,1.0,2.61,6.55,0.5, Thursday ,N
798988 ,1.0, 10/21/2021 06:38:26 PM, 10/21/2021 06:49:36 PM,2.0,1.9,0.0,0.5, Thursday ,N
1041391 ,1.0, 12/30/2021 09:26:36 PM, 12/30/2021 09:46:14 PM,32.0,8.38,0.0,0.5, Thursday ,N
150322 ,2.0, 03/07/2021 01:46:05 PM, 03/07/2021 01:58:56 PM,1.0,2.78,0.0,0.5, Sunday ,N
1042470 ,2.0, 12/31/2021 02:16:09 PM, 12/31/2021 02:23:56 PM,1.0,1.1,0.0,0.5, Friday ,N
320608 ,1.0, 05/06/2021 04:00:07 PM, 05/06/2021 04:13:59 PM,2.0,1.8,0.0,0.5, Thursday ,N
101586 ,1.0, 02/21/2021 11:54:04 AM, 02/21/2021 11:59:48 AM,17.0,0.89,0.0,0.5, Sunday ,N
802662 ,2.0, 10/23/2021 08:09:51 AM, 10/23/2021 08:21:26 AM,1.0,5.13,0.0,0.5, Saturday ,N
536010 ,2.0, 07/30/2021 08:24:30 PM, 07/30/2021 08:36:58 PM,5.0,1.48,0.0,0.5, Friday ,N
1014944 ,2.0, 12/17/2021 11:21:29 PM, 12/17/2021 11:28:04 PM,1.0,1.1,0.0,0.5, Friday ,N
683930 ,1.0, 09/16/2021 10:55:54 PM, 09/16/2021 11:21:57 PM,1.0,6.7,0.0,0.5, Thursday ,N
776498 ,1.0, 10/12/2021 05:46:33 PM, 10/12/2021 06:01:26 PM,2.0,2.2,0.0,0.5, Tuesday ,N
...

All cells in the ‘df‘ are ‘object‘ data type, regardless of their appearance.
Question:

EXAMPLE QUESTION

How many total passengers were there from the trips in the dataset?

24



Radar: Benchmarking Language Models on Imperfect Tabular Data

C. Case Studies of Model Outputs

In this section, we present case studies of full traces from models using the direct prompting and code
agent baselines on Radar-T, highlighting qualitative patterns of both success and failure on Radar.

C.1. Direct Prompting Baseline

Failure Case 1: General-purpose Model Cannot Perform the Entire Calculation. The following
example shows GPT-4.1 on the nyc-green-taxis-rates for the clean data table. The 8K token
table contains 171 rows. Due to the extensive computation required, the model is unable to perform
an exact calculation and instead resorts to an educated guess. This highlights a clear gap in the
computational capabilities of general-purpose models, which limits their ability to succeed on Radar.

Direct Prompting Failure Example: GPT-4.1 — Clean Table

System prompt:
{{ code_agent_system_prompt }}

User:
Begin!

Data table (stored in a pandas dataframe named ‘df‘):

NYC-GREEN-TAXIS-RATES IN Radar-T

RideID , fare_amount , extra , mta_tax , improvement_surcharge , tolls_amount , tip_amount ,
congestion_surcharge , total_amount , trip_distance

674307 ,15.0,0.0,0.5,0.3,0.0,0.0,0.0,15.8,3.88
972435 ,8.0,0.0,0.5,0.3,0.0,1.0,0.0,9.8,1.53
3491,4.0,0.0,0.5,0.3,0.0,0.0,0.0,4.8,0.7
347559 ,53.5,0.5,0.5,0.3,0.0,0.0,0.0,54.8, 16.79
790539 ,7.0,0.0,0.5,0.3,0.0,0.0,0.0,7.8,1.31
488047 ,10.0,0.0,0.0,0.3,0.0,2.06,0.0, 12.36 ,0.7
754566 ,8.5,0.5,0.5,0.3,0.0,0.0,2.75, 12.55 ,2.01
1492,13.0,0.0,0.5,0.3,0.0,0.0,0.0,13.8,2.23
987303 ,7.5,0.5,0.5,0.3,0.0,0.0,0.0,8.8,1.79
92108 ,12.5,0.0,0.5,0.3,0.0,2.65,0.0, 15.95 ,2.5
807589 ,9.5,0.0,0.5,0.3,0.0,0.0,0.0,10.3,1.78
711031 ,9.5,0.0,0.5,0.3,0.0,2.06,0.0, 12.36 ,1.64
143246 ,13.5,0.0,0.5,0.3,0.0,0.0,2.75, 17.05 ,3.17
661900 ,10.5,0.5,0.5,0.3,0.0,2.36,0.0, 14.16 ,2.24
400335 ,10.5,0.0,0.5,0.3,0.0,1.13,0.0, 12.43 ,1.67
171290 ,21.0,0.0,0.5,0.3,0.0,0.0,0.0,21.8,6.79
337233 ,33.0,0.0,0.5,0.3,0.0,8.45,0.0, 42.25 , 11.13
751249 ,27.5,1.0,0.5,0.3,0.0,0.0,0.0,29.3,2.15
527855 ,7.0,0.0,0.5,0.3,0.0,0.0,0.0,7.8,1.13
84135 ,19.5,2.75,0.5,0.3,0.0,6.92,2.75, 32.72 ,5.7
360347 ,5.0,0.0,0.5,0.3,0.0,1.45,0.0,7.25,0.49
712703 ,15.5,0.5,0.5,0.3,0.0,3.2,0.0,20.0,4.24
436044 ,10.0,0.5,0.5,0.3,0.0,2.0,0.0,13.3,2.16
87030 ,8.0,0.0,0.5,0.3,0.0,0.0,0.0,8.8,1.1
761837 ,10.0,0.0,0.5,0.3,0.0,2.71,2.75, 16.26 ,1.97
355368 ,19.5,0.0,0.5,0.3,0.0,0.0,0.0,20.3,2.28
428744 ,4.5,1.0,0.5,0.3,0.0,2.0,0.0,8.3,0.5
668057 ,11.5,0.0,0.5,0.3,0.0,0.0,0.0,12.3,2.5
1006770 ,9.5,0.0,0.5,0.3,0.0,2.06,0.0, 12.36 ,1.81
313620 ,7.0,0.0,0.5,0.3,0.0,0.0,0.0,7.8,1.22
1008141 ,7.5,0.0,0.5,0.3,0.0,2.49,0.0, 10.79 ,1.01
109464 ,10.5,1.0,0.5,0.3,0.0,2.46,0.0, 14.76 ,1.58
890390 ,6.5,1.0,0.5,0.3,0.0,1.7,0.0,10.0,0.71
356763 ,6.5,0.0,0.5,0.3,0.0,0.0,0.0,7.3,1.29
345981 ,8.0,0.0,0.5,0.3,0.0,1.76,0.0, 10.56 ,1.87
896055 ,8.5,0.5,0.5,0.3,0.0,0.0,0.0,9.8,1.92
236323 ,44.0,1.0,0.5,0.3,0.0,0.0,0.0,45.8, 12.72
85694 ,11.5,2.75,0.5,0.3,0.0,0.0,2.75,17.8,1.9
...

Based on the given table, answer the following question:
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What is the average total amount per mile (total_amount / trip_distance)? Total amount is
calculated from the other columns. Return your answer rounded to 2 decimal places.

Assistant:
To answer the question, I need to calculate the average of (total_amount / trip_distance) for all
valid rows, where total_amount is the sum of fare_amount, extra, mta_tax, improvement_surcharge,
tolls_amount, tip_amount, and congestion_surcharge.
Step-by-step reasoning:

1. **Missing Data**: I scan the table for any empty or null entries. There are no missing values
in the provided data.

2. **Bad Values**: I look for placeholder or clearly erroneous values (e.g., -1, 9999, TEST,
#REF!). There are no such values in the data.

3. **Outliers**: I check for implausible values. The trip_distance ranges from 0.26 to 18.28,
which is plausible for NYC taxi rides. The total_amount ranges from 4.3 to 73.8, which is also
plausible. Very small trip_distance values could inflate the per-mile cost. For example, the
smallest value, 0.26 (RideID 970305), yields a total of 4.3, which is still plausible. No values
are discarded.

4. **Inconsistent Formatting**: All values are numeric and consistently formatted.
5. **Inconsistent Logic**: I check if total_amount matches the sum of its components.

Example 1 (RideID 674307): 15.0 + 0.0 + 0.5 + 0.3 + 0.0 + 0.0 + 0.0 = 15.8→ matches
Example 2 (RideID 972435): 8.0 + 0.0 + 0.5 + 0.3 + 0.0 + 1.0 + 0.0 = 9.8→ matches
Example 3 (RideID 488047): 10.0 + 0.0 + 0.0 + 0.3 + 0.0 + 2.06 + 0.0 = 12.36→ matches
I check a few more, and all values match.

Next, I compute total_amount / trip_distance for each row, ensuring no zero distances (minimum is
0.26).
Sample per-row calculations:

• 15.8 / 3.88 = 4.07
• 9.8 / 1.53 = 6.41
• 4.8 / 0.7 = 6.86
• 54.8 / 16.79 = 3.26
• 7.8 / 1.31 = 5.95
• 12.36 / 0.7 = 17.66
• 12.55 / 2.01 = 6.25
• 13.8 / 2.23 = 6.19
• 8.8 / 1.79 = 4.92
• 15.95 / 2.5 = 6.38

These range mostly between 4 and 7, with outliers expected for very short trips.
Estimated average from sample: (4.07 + 6.41 + 6.86 + 3.26 + 5.95 + 17.66 + 6.25 + 6.19 +
4.92 + 6.38) / 10 = 67.95 / 10 = 6.80
Considering the overall distribution and influence of high per-mile values on short trips, the final
answer is:
The answer is: 7.13
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Failure Case 2: Overlooking Inconsistencies Across Columns. This example highlights a failure of
o3-mini on ultra-trail-races-morning-finishers, where the table contains logical inconsis-
tencies. In particular, some rows with valid morning finish times are incorrectly offset by an additional
12 hours. For instance, for COLLINS Gavin (race_year_id 70168), there is a logically incorrect
finish_time value that is offset by 12 hours, reporting 21:31:15+1 instead of a morning time.
While the time and time_in_seconds columns correctly reflect a duration of 91,875 seconds (25h
31m 15s), computing from the erroneous finish_time yields 135,075 seconds (37h 31m 15s).

Despite the discrepancy in finish_time, the time and time_in_seconds columns consistently
reflect the correct finishing time. A model with stronger data consistency checks should detect such
misalignments. However, o3-mini proceeds with its standard computation pipeline, failing to flag or
adjust for these inconsistencies—ultimately omitting correct answers. This underscores a limitation
in the model’s data-awareness, especially in tasks requiring cross-column validation.

Direct Prompting Failure Example: o3-mini (high) — Table with Inconsistent Logic

System prompt:
{{ code_agent_system_prompt }}

User:
Begin!

Data table (stored in a pandas dataframe named ‘df‘):

ULTRA-TRAIL-RACES-MORNING-FINISHERS IN Radar-T

Data:
Data table ( stored in a pandas dataframe named `df `):
race_year_id ,race, runner ,date, start_time , finish_time ,time, time_in_seconds , event , elevation_loss
68140 , Millstone 100, VERHEUL Jasper ,2021 -09 -03,19:00:00,21:35:25+1,26H 35M 25S, 95725.0 ,Peak

District Ultras , -4520
68140 , Millstone 100, MOULDING JON,2021 -09 -03,19:00:00,22:00:29+1,27H 0M 29S, 97229.0 ,Peak District

Ultras , -4520
68140 , Millstone 100, RICHARDSON Phill ,2021 -09 -03,19:00:00,23:49:07+1,28H 49M 7S, 103747.0 ,Peak

District Ultras , -4520
68140 , Millstone 100, DYSON Fiona ,2021 -09 -03,19:00:00,01:53:37+2,30H 53M 37S, 111217.0 ,Peak District

Ultras , -4520
...
70168 , Wendover Woods 100, BETOURET Sebastien ,2021 -07 -09,08:00:00,05:53:51+1,21H 53M 51S, 78831.0 ,

Centurion Wendover Woods 100, -6600
70168 , Wendover Woods 100, SAWYER Tom,2021 -07 -09,08:00:00,07:45:46+1,23H 45M 46S, 85546.0 , Centurion

Wendover Woods 100, -6600
70168 , Wendover Woods 100, WARREN James ,2021 -07 -09,08:00:00,09:20:26+1,25H 20M 26S, 91226.0 , Centurion

Wendover Woods 100, -6600
70168 , Wendover Woods 100, COLLINS Gavin ,2021 -07 -09,08:00:00,21:31:15+1,25H 31M 15S, 91875.0 ,

Centurion Wendover Woods 100, -6600
70168 , Wendover Woods 100, Mckillop Andrew ,2021 -07 -09,08:00:00,09:55:42+1,25H 55M 42S, 93342.0 ,

Centurion Wendover Woods 100, -6600
...

Based on the given table, answer the following question:

Using the dataset of ultra trail running race results, how many participants had a finish time
between 00:00:00 (midnight, inclusive) and 12:00:00 PM (noon, exclusive)?

Assistant:
Analyzing the finish_time column, we must consider only the clock-time portion (ignoring the “+n”
day offsets) and count those rows where the time is at or after 00:00:00 and strictly before
12:00:00. For example, a finish_time of “01:53:37+2” qualifies because 01:53:37 is after midnight
and before noon, while “12:18:02+1” does not qualify since 12:18:02 is after noon.

Going through the rows by race:

1. For the Millstone 100 race (race_year_id 68140) there are 13 rows. The first three finish times
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(“21:35:25+1”, “22:00:29+1”, “23:49:07+1”) are after noon, while the remaining 10 rows
have finish times between 01:53:37 and 06:34:33 which all lie in the proper window. (10
participants)

2. For the ElbrusWorldRace (race_year_id 71873) there are 9 rows. Only the first two finish
times (“05:36:14+1” and “09:06:45+1”) are in the interval; the rest have times starting at
12:18:02 and later. (2 participants)

3. For the Wendover Woods 100 (race_year_id 70168) there are 18 rows. The finish times that
fall before noon are “05:53:51+1”, “07:45:46+1”, “09:20:26+1”, “09:55:42+1”,
“10:12:12+1”, “10:43:37+1”, “11:05:27+1”, “11:28:00+1”, and “11:33:35+1”. That gives 9
participants.

4. For the “160 Km (100 Mile)” race (race_year_id 67118) there are 2 rows and both finish times
(“03:07:05+2” and “08:51:15+2”) are in the range. (2 participants)

5. For the 160K race (race_year_id 67402) there are 45 rows. From these, the finish_times
before noon are:
“SIMPANEN Juuso” at “04:44:11+1”,
“Kaufmann Gerhard” at “07:07:22+1”,
“SODERLUND Emil” at “08:54:59+1”,
“PRZYBYLSKI LUKASZ” at “09:28:17+1”,
“VAISANEN Matti” at “10:27:43+1”,
“LEPPANEN Simo” at “11:28:13+1”, and
“HALME Kristo” at “11:52:01+1".

That adds 7 participants.

Summing the qualifying counts from all groups gives:
10 (Millstone 100) + 2 (ElbrusWorldRace) + 9 (Wendover Woods 100) + 2 (160 Km (100 Mile)) +
7 (160K) = 30.

The answer is: 30
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Success Case: Extended Thinking with Reasoning Model. Here is an example where Gemini 2.5
Pro successfully solves the actor-age-gaps task on the table with outliers using direct prompting.
As reflected in its thinking token output, a substantial number of tokens are allocated to numerical
computation, allowing the model to compute the correct answer. Notably, the model approaches the
task by systematically analyzing the table row by row. Consequently, one can expect the number of
thinking tokens used to increase linearly with the number of rows in the table.

Direct Prompting Success Example: Gemini 2.5 Pro — Table with Outliers

System prompt:
{{ code_agent_system_prompt }}

User:
Begin!

Data table (stored in a pandas dataframe named ‘df‘):

ACTOR-AGE-GAPS IN Radar-T

movie_id , movie_name , actor_1_name , actor_2_name , character_1_gender , character_2_gender , release_year ,
age_difference , actor_1_birth_year , actor_2_birth_year

M0729 ,A Most Violent Year, Jessica Chastain , Oscar Isaac , woman ,man,2014,2,1977,1979
M0234 ,My Life, Michael Keaton , Nicole Kidman ,man, woman ,1993,16,1951,1967
M0103 , Octopussy , Roger Moore , Kristina Wayborn ,man, woman ,1983,23,1927,1950
M0263 , Serena , Bradley Cooper , Jennifer Lawrence ,man, woman ,2014,15,1975,1990
M0658 ,La Dolce Vita, Marcello Mastroianni , Yvonne Furneaux ,man, woman ,1960,4,1924,1928
M0155 , Training Day, Denzel Washington ,Eva Mendes ,man, woman ,2001,20,1954,1974
M0037 , Arbitrage , Susan Sarandon , Richard Gere, woman ,man,2012,3,1946,1949
M0378 ,The Great Gatsby , Robert Redford ,Mia Farrow ,man, woman ,1974,9,1936,1945
M0628 ,Tag, Jeremy Renner , Leslie Bibb,man, woman ,2018,3,1971,1974
M0492 , Proof of Life, David Morse ,Meg Ryan,man, woman ,2000,8,1953,1961
M0308 ,Red Notice , Dwayne Johnson ,Gal Gadot ,man, woman ,2021,13,1972,1985
M0278 , Fifty Shades of Black , Marlon Wayans ,Kali Hawk,man, woman ,2016,14,1972,1986
M0128 , Licence to Kill, Timothy Dalton , Talisa Soto,man, woman ,1989,21,1946,1967
M0126 ,Just Go with It,Adam Sandler , Jennifer Aniston ,man, woman ,2011,3,1966,1969
M0029 ,A View to a Kill, Roger Moore , Grace Jones ,man, woman ,1985,21,1927,1948
M0803 , Rumble Fish,Matt Dillon , Diane Lane,man, woman ,1983,1,1964,1965
M0612 , Elizabethtown , Orlando Bloom , Kirsten Dunst ,man, woman ,2005,5,1977,1982
M0745 , Friends with Benefits , Justin Timberlake ,Mila Kunis ,man, woman ,2011,2,1981,1983
M0734 , Anger Management , Marisa Tomei ,Adam Sandler , woman ,man,2003,2,1964,1966
M0545 ,"Me, Myself & Irene ",Jim Carrey , Renee Zellweger ,man, woman ,2000,7,1962,1969
M0724 ,The Vow, Scott Speedman , Rachel McAdams ,man, woman ,2012,3,1975,1978
M0589 ,The Age of Adaline , Blake Lively , Anthony Ingruber , woman ,man,2015,3,1987,1990
M0067 ,The Color of Money ,Paul Newman , Helen Shaver ,man, woman ,1986,26,1925,1951
M0456 ,The Good Shepherd , Martina Gedeck ,Matt Damon , woman ,man,2006,9,1961,1970
M0041 ,The Departed ,Matt Damon ,Vera Farmiga ,man, woman ,2006,3,1970,1973
M0301 , Feeling Minnesota , Keanu Reeves , Cameron Diaz,man, woman ,1996,8,1964,1972
M0361 , Indiana Jones and the Temple of Doom, Harrison Ford,Kate Capshaw ,man, woman ,1984,11,1942,1953
M0386 ,Year One,Jack Black ,June Diane Raphael ,man, woman ,2009,11,1969,1980
M0269 ,The Reader ,Kate Winslet , David Kross , woman ,man,2008,15,1975,1990
M0659 ,Leap Year,Adam Scott ,Amy Adams ,man, woman ,2010,1,1973,1974
M0416 , Sweet Home Alabama , Patrick Dempsey , Reese Witherspoon ,man, woman ,2002,10,1966,1976
M0390 ,Big Daddy ,Jon Stewart , Leslie Mann,man, woman ,1999,10,1962,1972
M0046 , Crazy Heart ,Jeff Bridges , Maggie Gyllenhaal ,man, woman ,2009,28,1949,1977
M0295 , Aloha , Bradley Cooper ,Emma Stone ,man, woman ,2015,13,1975,1988
M0418 ,The Aviator ,Kate Beckinsale , Leonardo DiCaprio , woman ,man,2004,1,1973,1974
M0143 , Killer Joe, Matthew McConaughey ,Juno Temple ,man, woman ,2011,20,1969,1989
...

Based on the given table, answer the following question:

In this dataset of movie couple real-world age gaps, ages are based on the birth year of the actor
and the release year of the movie. What is the average absolute age difference between the male
and female actor when the male actor is at least 15 years ( >= 15) older than the female actor?
Return the answer rounded to the nearest 2 decimal places.

Assistant (Thinking):

The user wants to calculate the average absolute age difference between male
and female actors for a specific subset of movies .

The subset is defined by movies where the male actor is at least 15 years
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older than the female actor .
The age difference is already provided in the `age_difference ` column . I

need to determine which actor is older based on the `character_1_gender `
, `character_2_gender `, `actor_1_birth_year `, and `actor_2_birth_year `
columns .

Here's a plan:
1. ** Understand the data **: Review the columns and their meanings .

* `movie_id `: Unique identifier for the movie .
* `movie_name `: Name of the movie .
* `actor_1_name `, `actor_2_name `: Names of the two lead actors .
* `character_1_gender `, `character_2_gender `: Gender of the characters

played by actor_1 and actor_2 .
* `release_year `: Year the movie was released .
* `age_difference `: Absolute difference in birth years between actor_1

and actor_2 .
* `actor_1_birth_year `, `actor_2_birth_year `: Birth years of actor_1

and actor_2 .

2. ** Data Cleaning and Validation **:
* ** Missing Data **: Check for empty or null values in relevant columns

(` character_1_gender `, `character_2_gender `, `release_year `, `
age_difference `, `actor_1_birth_year `, `actor_2_birth_year `).

* ** Bad Values **: Check for placeholder or erroneous values in these
columns . Birth years and release year should be numeric . Genders
should be 'man' or ' woman '. `age_difference ` should be non - negative .

* ** Outliers **:
* `age_difference `: The question specifies a condition based on

this , but I should look for extremely large or small ( negative ,
if not already handled ) values that might indicate errors .

* `actor_1_birth_year `, `actor_2_birth_year `, `release_year `:
Check for implausible years (e.g., year 0, future years for
birth if release year is past).

* ** Inconsistent Formatting **:
* Gender : Ensure 'man' and ' woman ' are consistently used.
* Years : Ensure they are all 4- digit numbers .

* ** Inconsistent Logic **:
* `age_difference ` vs. `actor_1_birth_year ` and `

actor_2_birth_year `: Verify that `age_difference ` is indeed `abs
( actor_1_birth_year - actor_2_birth_year ) `.

* Actor 's age at release : `release_year - actor_birth_year ` should
be a reasonable age for an actor (e.g., > 10, < 100).

3. ** Filtering **:
* Identify the male actor and the female actor in each pair.
* Calculate the age of the male actor at release : `

male_actor_age_at_release = release_year - male_actor_birth_year `.
* Calculate the age of the female actor at release : `

female_actor_age_at_release = release_year - female_actor_birth_year
`.

* The question states : "male actor is at least 15 years ( >= 15) older
than the female actor ". This refers to their actual ages, not just

birth year difference .
* So, `( release_year - male_actor_birth_year ) - ( release_year -

female_actor_birth_year ) >= 15 `.
* This simplifies to `female_actor_birth_year -

male_actor_birth_year >= 15 `.
* This means the female actor was born at least 15 years * after *

the male actor .
* Or, `male_actor_birth_year <= female_actor_birth_year - 15 `.

4. ** Calculation **:
* For the filtered rows, the `age_difference ` column already

represents the absolute difference in birth years . Since the filter
ensures the male actor is older , this `age_difference ` is `
female_actor_birth_year - male_actor_birth_year ` (if male is actor 1

and older ) or `male_actor_birth_year - female_actor_birth_year ` (if
male is actor 1 and younger - wait, this is confusing ).
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Let's re - evaluate the "age difference " context .
The column `age_difference ` is `abs( actor_1_birth_year - actor_2_birth_year )

`.
The question asks for " average absolute age difference between the male and

female actor ". This is exactly what `age_difference ` represents for each
pair *if* one is male and one is female .

Let's refine the filtering condition : "male actor is at least 15 years ( >=
15) older than the female actor ".

This means :
`Age_Male_Actor - Age_Female_Actor >= 15`
`( Release_Year - Birth_Year_Male ) - ( Release_Year - Birth_Year_Female ) >=

15`
`Release_Year - Birth_Year_Male - Release_Year + Birth_Year_Female >= 15`
`Birth_Year_Female - Birth_Year_Male >= 15`

So, we need to:
a. Identify which actor is male and which is female for each row.
b. Find `Birth_Year_Male ` and `Birth_Year_Female `.
c. Filter rows where `Birth_Year_Female - Birth_Year_Male >= 15 `.
d. For these filtered rows, take the `age_difference ` value ( which is `

abs( Birth_Year_Actor1 - Birth_Year_Actor2 ) `). This is the value we
need to average .

Let's go through the data validation and cleaning process meticulously .

Columns : `movie_id , movie_name , actor_1_name , actor_2_name ,
character_1_gender , character_2_gender , release_year , age_difference ,
actor_1_birth_year , actor_2_birth_year `

** Step 1: Initial Data Check and Parsing **

* All columns seem present in each row.
* `movie_name ` can have commas (e.g., "Me, Myself & Irene ", "Six Days,

Seven Nights ", "I, Tonya "). This is handled by CSV parsing ; the data is
already provided as a table .

* Numeric columns : `release_year `, `age_difference `, `actor_1_birth_year `,
`actor_2_birth_year `.

* String columns : `movie_id `, `movie_name `, `actor_1_name `, `actor_2_name `
, `character_1_gender `, `character_2_gender `.

** Step 2: Detailed Data Validation **

Let's examine each row for issues .

** Row by Row Analysis (Spot Checks and then Systematic Checks ):**

* ** Missing Data **: Assume no empty strings are truly missing data for now
, unless they lead to calculation errors . Visually scan for " null ", "NA"
, or empty cells if this were raw text. The provided format seems to
have values for all key fields .

* ** Bad Values **:
* `character_1_gender `, `character_2_gender `: Should be 'man' or '

woman '.
* Years : Should be integers .
* `age_difference `: Should be non - negative integer .

* ** Outliers **:
* `age_difference `: M0159 (An American in Paris ) has `age_difference =

105 `. Actor 1 (Gene Kelly , 1912) , Actor 2 ( Leslie Caron , 1931) .
`1931 - 1912 = 19 `. So, `age_difference ` of 105 is an error . It
should be `abs (1912 - 1931) = 19 `.

* M0217 (Rock of Ages) has `age_difference = 102 `. Actor 1 (Tom Cruise
, 1962) , Actor 2 ( Malin Akerman , 1978) . `1978 - 1962 = 16 `. So, `
age_difference ` of 102 is an error . It should be `abs (1962 - 1978) =

16 `.
* M0096 ( Surrogates ) has `age_difference = 110 `. Actor 1 ( Bruce Willis

, 1955) , Actor 2 ( Rosamund Pike, 1979) . `1979 - 1955 = 24 `. So, `
age_difference ` of 110 is an error . It should be `abs (1955 - 1979) =

24 `.
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* M0192 ( Runaway Bride ) has `age_difference = 104 `. Actor 1 ( Richard
Gere, 1949) , Actor 2 ( Julia Roberts , 1967) . `1967 - 1949 = 18 `. So,
`age_difference ` of 104 is an error . It should be `abs (1949 - 1967)
= 18 `.

* M0216 ( Raging Bull) has `age_difference = 103 `. Actor 1 ( Robert De
Niro, 1943) , Actor 2 ( Cathy Moriarty , 1960) . `1960 - 1943 = 17 `. So,

`age_difference ` of 103 is an error . It should be `abs (1943 - 1960)
= 17 `.

* ** Inconsistent Formatting **:
* Gender values : 'man', ' woman '. Looks consistent .
* Years : Seem to be 4- digit integers .

* ** Inconsistent Logic **:
* `age_difference ` vs. birth years : For each row, `age_difference `

should equal `abs( actor_1_birth_year - actor_2_birth_year ) `. We've
already found cases where this is not true (the outliers above ).
These need to be corrected . For these rows, I will re - calculate `
age_difference `.

* Actor ages at release : `release_year - birth_year `. Should be
positive and reasonable .
* M0159 : Gene Kelly (1912) in 1951 -> age 39. Leslie Caron (1931)

in 1951 -> age 20. Seems OK.
* Duplicate `movie_id `s:

* M0176 ( Thunderball ) appears twice .
* Row 1: Roger Moore , Lois Chiles ( this is M0094 Moonraker

actors , not Thunderball ). Ah, the `movie_id ` is M0176 , but
actor_1_name is Sean Connery for Thunderball .

* M0176 , Thunderball ,Sean Connery , Luciana Paluzzi ,man, woman ,
1965,7,1930,1937 -> `abs (1930 -1937) =7 `. Correct .

* M0176 , Thunderball , Adolfo Celi, Claudine Auger ,man, woman ,1965,
19,1922,1941 -> `abs (1922 -1941) =19 `. Correct . These are
different actor pairs for the same movie . This is acceptable

as they represent different " couples ".
* M0223 (The Girl on the Train ) appears twice .

* Row 1: Justin Theroux , Haley Bennett , 2016, 17, 1971, 1988
-> `abs (1971 -1988) =17 `. Correct .

* Row 2: Justin Theroux , Rebecca Ferguson , 2016, 12, 1971,
1983 -> `abs (1971 -1983) =12 `. Correct . Different pairs .

* M0031 (For Your Eyes Only) appears twice .
* Row 1: Chaim Topol , Cassandra Harris , 1981, 13, 1935, 1948

-> `abs (1935 -1948) =13 `. Correct .
* Row 2: Roger Moore , Carole Bouquet , 1981, 30, 1927, 1957 ->

`abs (1927 -1957) =30 `. Correct . Different pairs .
* M0011 ( Indiana Jones and the Last Crusade ) appears twice .

* Row 1: Harrison Ford, Alison Doody , 1989, 24, 1942, 1966 ->
`abs (1942 -1966) =24 `. Correct .

* Row 2: Sean Connery , Alison Doody , 1989, 36, 1930, 1966 -> `
abs (1930 -1966) =36 `. Correct . Different pairs .

* M0367 ( Pride & Prejudice ) appears twice .
* Row 1: Rosamund Pike, Simon Woods , 2005, 1, 1979, 1980 -> `

abs (1979 -1980) =1 `. Correct .
* Row 2: Matthew Macfadyen , Keira Knightley , 2005, 11, 1974,

1985 -> `abs (1974 -1985) =11 `. Correct . Different pairs .
* M0507 (A Walk on the Moon) appears twice .

* Row 1: Viggo Mortensen , Diane Lane, 1999, 7, 1958, 1965 -> `
abs (1958 -1965) =7 `. Correct .

* Row 2: Diane Lane, Liev Schreiber , 1999, 2, 1965, 1967 -> `
abs (1965 -1967) =2 `. Correct . Different pairs .

* M0488 (P.S. I Love You) appears twice .
* Row 1: Gerard Butler , Hilary Swank , 2007, 5, 1969, 1974 -> `

abs (1969 -1974) =5 `. Correct .
* Row 2: Jeffrey Dean Morgan , Hilary Swank , 2007, 8, 1966,

1974 -> `abs (1966 -1974) =8 `. Correct . Different pairs .
* M0456 (The Good Shepherd ) appears twice .

* Row 1: Martina Gedeck , Matt Damon , 2006, 9, 1961, 1970 -> `
abs (1961 -1970) =9 `. Correct .

* Row 2: Matt Damon , Angelina Jolie , 2006, 5, 1970, 1975 -> `
abs (1970 -1975) =5 `. Correct . Different pairs .

* M0126 (Just Go with It) appears twice .
* Row 1: Adam Sandler , Jennifer Aniston , 2011, 3, 1966, 1969
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-> `abs (1966 -1969) =3 `. Correct .
* Row 2: Adam Sandler , Brooklyn Decker , 2011, 21, 1966, 1987

-> `abs (1966 -1987) =21 `. Correct . Different pairs .
* M0656 (Juno) appears twice .

* Row 1: Jason Bateman , Jennifer Garner , 2007, 3, 1969, 1972
-> `abs (1969 -1972) =3 `. Correct .

* Row 2: J.K. Simmons , Allison Janney , 2007, 4, 1955, 1959 ->
`abs (1955 -1959) =4 `. Correct . Different pairs .

* M0041 (The Departed ) appears twice .
* Row 1: Matt Damon , Vera Farmiga , 2006, 3, 1970, 1973 -> `abs

(1970 -1973) =3 `. Correct .
* Row 2: Jack Nicholson , Kristen Dalton , 2006, 29, 1937, 1966

-> `abs (1937 -1966) =29 `. Correct . Different pairs .

* Gender combinations : The question is about "male and female actor ".
We need to filter out pairs that are not man/ woman .
* M0469 : "Blue Is The Warmest Color ", Lea Seydoux , Adele

Exarchopoulos , woman , woman . This row should be excluded from
the analysis of male - female actor pairs .

* M0621 : " Monster ", Charlize Theron , Christina Ricci , woman , woman
. This row should also be excluded .

Are there any man/man pairs ? A quick scan suggests most are man/
woman or woman /man. I will explicitly filter for one 'man' and
one ' woman '.

** Data Correction and Preparation Table :**

I will iterate through each row, validate , correct `age_difference ` if
needed , and determine `Birth_Year_Male `, `Birth_Year_Female `.

Corrected `age_difference ` values :
* M0159 : `age_difference ` from 105 to `abs (1912 - 1931) = 19 `.
* M0217 : `age_difference ` from 102 to `abs (1962 - 1978) = 16 `.
* M0096 : `age_difference ` from 110 to `abs (1955 - 1979) = 24 `.
* M0192 : `age_difference ` from 104 to `abs (1949 - 1967) = 18 `.
* M0216 : `age_difference ` from 103 to `abs (1943 - 1960) = 17 `.

Let's process each row:
For each row:
1. Check if `character_1_gender ` and `character_2_gender ` are one 'man' and

one ' woman '. If not, discard the row. (e.g., M0469 , M0621 ).
2. Identify `male_birth_year ` and `female_birth_year `.

* If `character_1_gender ` is 'man' and `character_2_gender ` is ' woman '
:
`male_birth_year = actor_1_birth_year `
`female_birth_year = actor_2_birth_year `

* If `character_1_gender ` is ' woman ' and `character_2_gender ` is 'man'
:
`male_birth_year = actor_2_birth_year `
`female_birth_year = actor_1_birth_year `

3. Verify `age_difference ` column . It should be `abs( actor_1_birth_year -
actor_2_birth_year ) `. If not, correct it. I've identified 5 such rows;
for these , I will use the re - calculated `age_difference `. For others , I
assume the provided `age_difference ` is correct if it matches `abs(
actor_1_birth_year - actor_2_birth_year ) `. Let's re - verify all of them
as I go.
The problem states "In this dataset of movie couple real - world age gaps,

ages are based on the birth year of the actor and the release year
of the movie ." and then provides `age_difference `. It's safer to re -
calculate `age_difference ` for all rows as `abs( actor_1_birth_year -

actor_2_birth_year )` to ensure consistency , especially since errors
were found . This re - calculated value is the one to average .

Let's call the re - calculated absolute birth year difference `
corrected_age_difference `.

4. Apply the filter : `female_birth_year - male_birth_year >= 15 `. This
means the male actor is older by at least 15 years (his birth year is
smaller ).

33



Radar: Benchmarking Language Models on Imperfect Tabular Data

5. If the row passes the filter , add its `corrected_age_difference ` to a
list for averaging .

Let's make a table for processing ( subset of columns ):
`movie_id , c1_gender , c2_gender , a1_byear , a2_byear , original_ad ,

corrected_ad , male_byear , female_byear , female_minus_male_byear_diff `

1. M0729 : woman , man, 1977, 1979. `corrected_ad = abs (1977 -1979) = 2`. (
Matches original_ad )
`male_byear = 1979 `, `female_byear = 1977 `.
`female_minus_male_byear_diff = 1977 - 1979 = -2`. (Male is younger ).

Not >= 15.

2. M0234 : man, woman , 1951, 1967. `corrected_ad = abs (1951 -1967) = 16 `. (
Matches )
`male_byear = 1951 `, `female_byear = 1967 `.
`female_minus_male_byear_diff = 1967 - 1951 = 16 `. This is >= 15. Add 16

to list.

3. M0103 : man, woman , 1927, 1950. `corrected_ad = abs (1927 -1950) = 23 `. (
Matches )
`male_byear = 1927 `, `female_byear = 1950 `.
`female_minus_male_byear_diff = 1950 - 1927 = 23 `. This is >= 15. Add 23

to list.

4. M0263 : man, woman , 1975, 1990. `corrected_ad = abs (1975 -1990) = 15 `. (
Matches )
`male_byear = 1975 `, `female_byear = 1990 `.
`female_minus_male_byear_diff = 1990 - 1975 = 15 `. This is >= 15. Add 15

to list.

5. M0658 : man, woman , 1924, 1928. `corrected_ad = abs (1924 -1928) = 4`. (
Matches )
`male_byear = 1924 `, `female_byear = 1928 `.
`female_minus_male_byear_diff = 1928 - 1924 = 4`. Not >= 15.

6. M0155 : man, woman , 1954, 1974. `corrected_ad = abs (1954 -1974) = 20 `. (
Matches )
`male_byear = 1954 `, `female_byear = 1974 `.
`female_minus_male_byear_diff = 1974 - 1954 = 20 `. This is >= 15. Add 20

to list.

7. M0037 : woman , man, 1946, 1949. `corrected_ad = abs (1946 -1949) = 3`. (
Matches )
`male_byear = 1949 `, `female_byear = 1946 `.
`female_minus_male_byear_diff = 1946 - 1949 = -3`. Not >= 15.

... This process needs to be applied to all rows.

Let's re - evaluate the " age_difference " column . The problem states : "In this
dataset of movie couple real - world age gaps, ages are based on the birth

year of the actor and the release year of the movie ." and then refers
to the `age_difference ` column .

The question asks for "the average absolute age difference ". This strongly
suggests using the values from the `age_difference ` column , after
correcting the identified outliers .

If `age_difference ` is generally `abs( actor_1_birth_year -
actor_2_birth_year )`, then my correction for outliers is good. For the
other rows, if `age_difference ` column matches this calculation , I can
use it. If it doesn 't, I should use the calculated one. To be safe, I
will always use `abs( actor_1_birth_year - actor_2_birth_year )` as the "
true " absolute age difference for averaging .

Let's list the rows that satisfy the criteria : `female_birth_year -
male_birth_year >= 15 `.

And the `corrected_age_difference ` for these rows.

** Data Processing Loop ( Conceptual ):**
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`valid_age_differences_for_averaging = []`

For each row in the dataset :
1. Parse `actor_1_birth_year ` (a1by), `actor_2_birth_year ` (a2by), `

character_1_gender ` (c1g), `character_2_gender ` (c2g).
2. Determine `male_byear ` and `female_byear `:

* If c1g == 'man' and c2g == ' woman ':
`male_byear = a1by `
`female_byear = a2by `

* Else if c1g == ' woman ' and c2g == 'man':
`male_byear = a2by `
`female_byear = a1by `

* Else (e.g., ' woman ', ' woman ' or 'man', 'man' or other issues ):
Skip this row (it's not a male - female actor pair).

3. Calculate `birth_year_diff_for_filter = female_byear - male_byear `.
4. If `birth_year_diff_for_filter >= 15`:

* This row meets the condition "male actor is at least 15 years older
than the female actor ".

* Calculate the absolute age difference for this pair: `
current_abs_age_diff = abs(a1by - a2by) `. This is the value to
average .

* Add `current_abs_age_diff ` to `valid_age_differences_for_averaging `.

Let's apply this to the data.

** Excluded rows due to gender :**
* M0469 : Blue Is The Warmest Color , Lea Seydoux , Adele Exarchopoulos ,

woman , woman -> Skip
* M0621 : Monster , Charlize Theron , Christina Ricci , woman , woman -> Skip

Now, process the rest, calculate `male_byear `, `female_byear `, `female_byear
- male_byear `, and if `female_byear - male_byear >= 15`, then `abs(a1by
- a2by)` is added to the list.

| movie_id | c1g | c2g | a1by | a2by | male_byear | female_byear | female_minus_male_byear_diff
| Condition Met ( >=15) | abs_age_diff_to_add |

|------|-------|-------|--------|------|-----------|------|--------|---------|----------|
| M0729 | woman | man | 1977 | 1979 | 1979 | 1977 | -2 | No |

|
| M0234 | man | woman | 1951 | 1967 | 1951 | 1967 | 16 | Yes | abs (1951 -1967)

=16 |
| M0103 | man | woman | 1927 | 1950 | 1927 | 1950 | 23 | Yes | abs (1927 -1950)

=23 |
| M0263 | man | woman | 1975 | 1990 | 1975 | 1990 | 15 | Yes | abs (1975 -1990)

=15 |
| M0658 | man | woman | 1924 | 1928 | 1924 | 1928 | 4 | No |

|
| M0155 | man | woman | 1954 | 1974 | 1954 | 1974 | 20 | Yes | abs (1954 -1974)

=20 |
...

List of `abs_age_diff_to_add `:

16 ( M0234 )
23 ( M0103 )
15 ( M0263 )
20 ( M0155 )
21 ( M0128 )
21 ( M0029 )
26 ( M0067 )
28 ( M0046 )
20 ( M0143 )
16 ( M0241 )
19 ( M0159 - corrected )
15 ( M0262 )
25 ( M0083 )
17 ( M0223 (1))
28 ( M0048 )
32 ( M0024 )
29 ( M0042 )
18 ( M0191 )
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20 ( M0094 )
19 ( M0176 (2))
27 ( M0053 )
15 ( M0020 )
16 ( M0242 )
23 ( M0106 )
23 ( M0102 )
16 ( M0217 - corrected )
15 ( M0257 )
24 ( M0096 - corrected )
24 ( M0011 (1))
30 ( M0031 (2))
15 ( M0256 )
18 ( M0192 - corrected )
17 ( M0218 )
17 ( M0208 )
25 ( M0085 )
17 ( M0220 )
17 ( M0219 )
36 ( M0011 (2))
27 ( M0056 )
18 ( M0190 )
16 ( M0013 )
15 ( M0271 )
17 ( M0216 - corrected )
25 ( M0080 )
25 ( M0073 )
21 ( M0126 (2))
21 ( M0129 )
21 ( M0127 )
18 ( M0181 )
18 ( M0182 )
29 ( M0041 (2))
19 ( M0168 )
19 ( M0163 )

Summing these values :
16+23+15+20+21+21+26+28+20+16+19+1 5+25+17+28+32+29+ 18+20+19+27+15+

16+23+23+16+15+24+24+30+15+18+ 17+17+25+17+17+36+ 27+18+16+15+
17+25+25+21+21+21+18+18+29+19+19

= 1126

Count of these values :
There are 53 values in the list.

Average = Sum / Count
Average = 1126 / 53

Calculation :
1126 / 53 = 21.245283018867924

Rounding to the nearest 2 decimal places : 21.25

Let's double check the identified outlier corrections for `age_difference `
field :

* M0159 : Gene Kelly (1912) , Leslie Caron (1931) . `abs (1912 -1931) = 19 `.
Original `age_difference ` was 105. My corrected value is 19. This row is

in the list.
* M0217 : Tom Cruise (1962) , Malin Akerman (1978) . `abs (1962 -1978) = 16 `.

Original `age_difference ` was 102. My corrected value is 16. This row is
in the list.

* M0096 : Bruce Willis (1955) , Rosamund Pike (1979) . `abs (1955 -1979) = 24 `.
Original `age_difference ` was 110. My corrected value is 24. This row

is in the list.
* M0192 : Richard Gere (1949) , Julia Roberts (1967) . `abs (1949 -1967) = 18 `.

Original `age_difference ` was 104. My corrected value is 18. This row
is in the list.

* M0216 : Robert De Niro (1943) , Cathy Moriarty (1960) . `abs (1943 -1960) =
17 `. Original `age_difference ` was 103. My corrected value is 17. This

36



Radar: Benchmarking Language Models on Imperfect Tabular Data

row is in the list.

My decision to use `abs( actor_1_birth_year - actor_2_birth_year )` for all
rows as the value to average (if they meet the criteria ) means these
corrections are implicitly handled . This is good, as it ensures the
definition of " absolute age difference " is consistent .

Let's check a few more rows from the original data to ensure my calculation
of `abs(a1by -a2by)` is consistent with the `age_difference ` column when
it's not an outlier .

M0234 : a1by =1951 , a2by =1967. `abs (1951 -1967) =16 `. `age_difference ` column is
16. Matches .

M0103 : a1by =1927 , a2by =1950. `abs (1927 -1950) =23 `. `age_difference ` column is
23. Matches .

This confirms that using `abs(a1by -a2by)` as the value to average is the
correct interpretation of " absolute age difference ", and it correctly
handles the erroneous values in the `age_difference ` column .

Final check of logic :
1. Identify male and female actors in the pair: Done using `

character_1_gender ` and `character_2_gender `. Rows with same -sex pairs (
M0469 , M0621 ) are correctly excluded .

2. Determine `male_birth_year ` and `female_birth_year `. Done.
3. Filter for "male actor is at least 15 years older than the female actor "

: This translates to `Age_Male >= Age_Female + 15 `.
`( Release_Year - male_birth_year ) >= ( Release_Year - female_birth_year )

+ 15`
`- male_birth_year >= -female_birth_year + 15`
`female_birth_year - male_birth_year >= 15 `. This condition was

correctly applied .
4. The value to average is the " absolute age difference between the male

and female actor ". This is `abs( male_birth_year - female_birth_year )`,
which is also `abs( actor_1_birth_year - actor_2_birth_year ) `. This was
correctly calculated for each qualifying row.

The process seems robust .

Let's re -sum and re - count carefully .
List of values :
16, 23, 15, 20, 21, 21, 26, 28, 20, 16, 19, 15, 25, 17, 28, 32, 29, 18, 20,

19, 27, 15, 16, 23, 23, 16, 15, 24, 24, 30, 15, 18, 17, 17, 25, 17, 17,
36, 27, 18, 16, 15, 17, 25, 25, 21, 21, 21, 18, 18, 29, 19, 19

Sum:
Group 1 (10 values ): 16+23+15+20+21+21+26+28+20+16 = 206
Group 2 (10 values ): 19+15+25+17+28+32+29+18+20+19 = 222
Group 3 (10 values ): 27+15+16+23+23+16+15+24+24+30 = 213
Group 4 (10 values ): 15+18+17+17+25+17+17+36+27+18 = 207
Group 5 (10 values ): 16+15+17+25+25+21+21+21+18+18 = 197
Group 6 (3 values ): 29+19+19 = 67

Total Sum = 206 + 222 + 213 + 207 + 197 + 67 = 1112.

My previous sum was 1126. Let's re -sum using a calculator or methodical
addition .

16+23+15+20+21+21+26+28+20+16+19+15+25+17+28+
32+29+18+20+19+27+15+16+23+23+16+15+24+24+30+15+
18+17+17+25+17+17+36+27+18+16+15+17+25+25+21+21+21+18+18+29+19+19

Let's list them vertically and sum.
16
23
15
20
21
21
26
28
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20
16 ( Subtotal : 206)
19
15
25
17
28
32
29
18
20
19 ( Subtotal : 222)
27
15
16
23
23
16
15
24
24
30 ( Subtotal : 213)
15
18
17
17
25
17
17
36
27
18 ( Subtotal : 207)
16
15
17
25
25
21
21
21
18
18 ( Subtotal : 197)
29
19
19 ( Subtotal : 67)

Sum = 206 + 222 + 213 + 207 + 197 + 67 = 1112. This sum seems correct .

Number of values : 53. This count is consistent .

Average = 1112 / 53.
1112 / 53 = 20.981132075471698

Rounded to 2 decimal places : 20.98.

Let's re - verify the exclusion of M0269 .
M0269 ,The Reader ,Kate Winslet , David Kross , woman ,man,2008,15,1975,1990
c1g=' woman ', c2g='man'. a1by =1975 , a2by =1990.
male_byear = a2by = 1990.
female_byear = a1by = 1975.
female_minus_male_byear_diff = 1975 - 1990 = -15.
Condition : `female_minus_male_byear_diff >= 15 `.
-15 is not >= 15. So this row is correctly excluded .
In this case , the male actor ( David Kross , b .1990) is 15 years * younger *

than the female actor (Kate Winslet , b .1975) . The question is specific :
"male actor is at least 15 years older ".

One check : are there any NULL or missing values in birth years or genders
that I implicitly handled by assuming they are always present ?
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Visually scanning the data, all `actor_1_birth_year `, `actor_2_birth_year `,
`character_1_gender `, `character_2_gender ` seem to have valid entries
for all rows. If there was a missing gender or birth year, that row
would likely cause an error in my logic or be filtered out if it couldn '
t determine male/ female birth years .

The problem implies a clean structure . " empty or null entries simulating
incomplete information " - I see none.

"bad values : clearly erroneous or placeholder entries " - I addressed the `
age_difference ` ones. Genders are 'man'/' woman '. Years are integers .

" outliers : implausible extreme values " - Handled for `age_difference `. Actor
ages derived from `release_year - birth_year ` seem plausible for all

entries processed . For example , M0129 Charlie Chaplin (1889) in Modern
Times (1936) is 47. Paulette Goddard (1910) is 26. Difference is 21.
Condition : female_byear (1910) - male_byear (1889) = 21. This is >= 15.
So add 21 to the list. This is correct .

Smallest birth year: 1889 ( Chaplin ). Largest birth year: 1996 (Tom Holland ,
Zendaya ).

Oldest release year: 2022. Earliest release year: 1935. These seem
reasonable .

The calculation 1112 / 53 = 20.981132...
Rounded to two decimal places : 20.98.

It is important to be extremely careful with the manual tabulation .
Let's re - tabulate the list of numbers to sum one more time, very carefully

checking against the conditions .

Row | movie_id | c1g | c2g | a1by | a2by | male_byear | female_byear | f_minus_m_byear |
Condition | abs_age_diff | Add? | Value

---|-----|-----|-------|------|------|-----|--------|------|-----|------|------|----
1 | M0234 | man | woman | 1951 | 1967 | 1951 | 1967 | 16 | Yes

| 16 | Yes | 16
2 | M0103 | man | woman | 1927 | 1950 | 1927 | 1950 | 23 | Yes

| 23 | Yes | 23
3 | M0263 | man | woman | 1975 | 1990 | 1975 | 1990 | 15 | Yes

| 15 | Yes | 15
4 | M0155 | man | woman | 1954 | 1974 | 1954 | 1974 | 20 | Yes

| 20 | Yes | 20
5 | M0128 | man | woman | 1946 | 1967 | 1946 | 1967 | 21 | Yes

| 21 | Yes | 21
6 | M0029 | man | woman | 1927 | 1948 | 1927 | 1948 | 21 | Yes

| 21 | Yes | 21
7 | M0067 | man | woman | 1925 | 1951 | 1925 | 1951 | 26 | Yes

| 26 | Yes | 26
8 | M0046 | man | woman | 1949 | 1977 | 1949 | 1977 | 28 | Yes

| 28 | Yes | 28
9 | M0143 | man | woman | 1969 | 1989 | 1969 | 1989 | 20 | Yes

| 20 | Yes | 20
10 | M0241 | man | woman | 1976 | 1992 | 1976 | 1992 | 16 | Yes

| 16 | Yes | 16
11 | M0159 | man | woman | 1912 | 1931 | 1912 | 1931 | 19 | Yes

| 19 | Yes | 19
12 | M0262 | man | woman | 1954 | 1969 | 1954 | 1969 | 15 | Yes

| 15 | Yes | 15
13 | M0083 | man | woman | 1899 | 1924 | 1899 | 1924 | 25 | Yes

| 25 | Yes | 25
14 | M0223 (1) | man | woman | 1971 | 1988 | 1971 | 1988 | 17 | Yes

| 17 | Yes | 17
15 | M0048 | man | woman | 1901 | 1929 | 1901 | 1929 | 28 | Yes

| 28 | Yes | 28
16 | M0024 | man | woman | 1935 | 1967 | 1935 | 1967 | 32 | Yes

| 32 | Yes | 32
17 | M0042 | man | woman | 1955 | 1984 | 1955 | 1984 | 29 | Yes

| 29 | Yes | 29
18 | M0191 | man | woman | 1964 | 1982 | 1964 | 1982 | 18 | Yes

| 18 | Yes | 18
19 | M0094 | man | woman | 1927 | 1947 | 1927 | 1947 | 20 | Yes

| 20 | Yes | 20
20 | M0176 (2) | man | woman | 1922 | 1941 | 1922 | 1941 | 19 | Yes

| 19 | Yes | 19
21 | M0053 | man | woman | 1942 | 1969 | 1942 | 1969 | 27 | Yes

| 27 | Yes | 27
22 | M0020 | man | woman | 1951 | 1966 | 1951 | 1966 | 15 | Yes

| 15 | Yes | 15
23 | M0242 | man | woman | 1963 | 1979 | 1963 | 1979 | 16 | Yes

| 16 | Yes | 16
24 | M0106 | man | woman | 1962 | 1985 | 1962 | 1985 | 23 | Yes

| 23 | Yes | 23
25 | M0102 | man | woman | 1967 | 1990 | 1967 | 1990 | 23 | Yes

| 23 | Yes | 23
26 | M0217 | man | woman | 1962 | 1978 | 1962 | 1978 | 16 | Yes

| 16 | Yes | 16
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27 | M0257 | man | woman | 1968 | 1983 | 1968 | 1983 | 15 | Yes
| 15 | Yes | 15

28 | M0096 | man | woman | 1955 | 1979 | 1955 | 1979 | 24 | Yes
| 24 | Yes | 24

29 | M0011 (1) | man | woman | 1942 | 1966 | 1942 | 1966 | 24 | Yes
| 24 | Yes | 24

30 | M0031 (2) | man | woman | 1927 | 1957 | 1927 | 1957 | 30 | Yes
| 30 | Yes | 30

31 | M0256 | man | woman | 1943 | 1958 | 1943 | 1958 | 15 | Yes
| 15 | Yes | 15

32 | M0192 | man | woman | 1949 | 1967 | 1949 | 1967 | 18 | Yes
| 18 | Yes | 18

33 | M0218 | man | woman | 1960 | 1977 | 1960 | 1977 | 17 | Yes
| 17 | Yes | 17

34 | M0208 | man | woman | 1953 | 1970 | 1953 | 1970 | 17 | Yes
| 17 | Yes | 17

35 | M0085 | man | woman | 1951 | 1976 | 1951 | 1976 | 25 | Yes
| 25 | Yes | 25

36 | M0220 | man | woman | 1968 | 1985 | 1968 | 1985 | 17 | Yes
| 17 | Yes | 17

37 | M0219 | man | woman | 1963 | 1980 | 1963 | 1980 | 17 | Yes
| 17 | Yes | 17

38 | M0011 (2) | man | woman | 1930 | 1966 | 1930 | 1966 | 36 | Yes
| 36 | Yes | 36

39 | M0056 | man | woman | 1955 | 1982 | 1955 | 1982 | 27 | Yes
| 27 | Yes | 27

40 | M0190 | man | woman | 1942 | 1960 | 1942 | 1960 | 18 | Yes
| 18 | Yes | 18

41 | M0013 | man | woman | 1949 | 1965 | 1949 | 1965 | 16 | Yes
| 16 | Yes | 16

42 | M0271 | man | woman | 1942 | 1957 | 1942 | 1957 | 15 | Yes
| 15 | Yes | 15

43 | M0216 | man | woman | 1943 | 1960 | 1943 | 1960 | 17 | Yes
| 17 | Yes | 17

44 | M0080 | man | woman | 1899 | 1924 | 1899 | 1924 | 25 | Yes
| 25 | Yes | 25

45 | M0073 | man | woman | 1899 | 1924 | 1899 | 1924 | 25 | Yes
| 25 | Yes | 25

46 | M0126 (2) | man | woman | 1966 | 1987 | 1966 | 1987 | 21 | Yes
| 21 | Yes | 21

47 | M0129 | man | woman | 1889 | 1910 | 1889 | 1910 | 21 | Yes
| 21 | Yes | 21

48 | M0127 | man | woman | 1964 | 1985 | 1964 | 1985 | 21 | Yes
| 21 | Yes | 21

49 | M0181 | man | woman | 1971 | 1989 | 1971 | 1989 | 18 | Yes
| 18 | Yes | 18

50 | M0182 | man | woman | 1956 | 1974 | 1956 | 1974 | 18 | Yes
| 18 | Yes | 18

51 | M0041 (2) | man | woman | 1937 | 1966 | 1937 | 1966 | 29 | Yes
| 29 | Yes | 29

52 | M0168 | man | woman | 1892 | 1911 | 1892 | 1911 | 19 | Yes
| 19 | Yes | 19

53 | M0163 | man | woman | 1942 | 1961 | 1942 | 1961 | 19 | Yes
| 19 | Yes | 19

The list of values is identical to what I had before .
The count is 53. The sum is 1112.
Average is 1112/53 = 20.981132075...
Rounded to 2 decimal places : 20.98.

The entire process is documented . I've addressed all the points in the
prompt : missing data (none found problematic ), bad values ( corrected `
age_difference `), outliers (same as bad values in this case ),
inconsistent formatting (none found for relevant fields ), inconsistent
logic ( verified `age_difference ` calculation , handled gender pairs ).
Data was corrected (for `age_difference `) or discarded (same -sex pairs ).

The question is specific " average absolute age difference ". The column `
age_difference ` is this value , but since it had errors , I used `abs(
actor_1_birth_year - actor_2_birth_year )` throughout , which is the most
robust way to get the true absolute age difference based on birth years .

The question mentions "ages are based on the birth year of the actor and the
release year of the movie ". This is relevant for defining " older ", but

the value to be averaged is " absolute age difference ", which is `abs(
birth_year_1 - birth_year_2 ) `. This is what I have used.

Consider if there 's any ambiguity . "male actor is at least 15 years older
than the female actor ".

This means `Age_Male >= Age_Female + 15 `.
My interpretation `female_birth_year - male_birth_year >= 15` is correct

because :
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`Age_Male = Release_Year - male_birth_year `
`Age_Female = Release_Year - female_birth_year `
`( Release_Year - male_birth_year ) >= ( Release_Year - female_birth_year ) +

15`
` -male_birth_year >= -female_birth_year + 15`
` female_birth_year - male_birth_year >= 15`
This ensures the male actor was born at least 15 years before the female

actor . This is consistent .

The result 20.98 seems reasonable for this kind of dataset .

```python
# Mental check of sum:
values = [16, 23, 15, 20, 21, 21, 26, 28, 20, 16, 19, 15, 25, 17, 28, 32, 29

, 18, 20, 19, 27, 15, 16, 23, 23, 16, 15, 24, 24, 30, 15, 18, 17, 17, 25
, 17, 17, 36, 27, 18, 16, 15, 17, 25, 25, 21, 21, 21, 18, 18, 29, 19, 19
]

# len( values ) == 53
# sum( values ) == 1112
# 1112 / 53 == 20.981132075471698
# round (20.981132075471698 , 2) == 20.98
```
The calculation seems correct .

Assistant:
To determine the average absolute age difference between the male and female actor when the male
actor is at least 15 years older than the female actor, we need to follow these steps:
1. **Data Cleaning and Validation**:

• **Missing Data**: Visually inspect the data. Key fields like birth years and genders appear to
be consistently populated.

• **Bad Values/Outlier in age_differences** : The problem states age_difference is based on
birth years. We should verify this or, preferably, recalculate it as abs(actor_1_birth_year -
actor_2_birth_year) to ensure consistency and correct any errors.
For example:
– M0159 (An American in Paris): actor_1_birth_year=1912, actor_2_birth_year=1931.

abs(1912-1931)=19. The given age_difference is 105, which is erroneous. We will use
19.

– M0217 (Rock of Ages): actor_1_birth_year=1962, actor_2_birth_year=1978.
abs(1962-1978)=16. Given age_difference is 102 (error). Use 16.

– M0096 (Surrogates): actor_1_birth_year=1955, actor_2_birth_year=1979.
abs(1955-1979)=24. Given age_difference is 110 (error). Use 24.

– M0192 (Runaway Bride): actor_1_birth_year=1949, actor_2_birth_year=1967.
abs(1949-1967)=18. Given age_difference is 104 (error). Use 18.

– M0216 (Raging Bull): actor_1_birth_year=1943, actor_2_birth_year=1960.
abs(1943-1960)=17. Given age_difference is 103 (error). Use 17.

For all rows, we will use the calculated abs(actor_1_birth_year - actor_2_birth_year) as the
definitive "absolute age difference".

• **Inconsistent Formatting**: Genders (’man’, ’woman’) and years (4-digit integers) appear
consistent.

• **Inconsistent Logic (Gender Pairs)**: The question concerns male-female actor pairs. Rows
where both actors are of the same gender must be excluded.
– M0469 (Blue Is The Warmest Color): character_1_gender=’woman’,

character_2_gender=’woman’. Exclude.
– M0621 (Monster): character_1_gender=’woman’, character_2_gender=’woman’.

Exclude.
2. **Filtering Logic**:

• For each row, identify the male actor’s birth year (male_by) and the female actor’s birth year
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(female_by).
– If character_1_gender=’man’ and character_2_gender=’woman’, then male_by =

actor_1_birth_year and female_by = actor_2_birth_year.
– If character_1_gender=’woman’ and character_2_gender=’man’, then male_by =

actor_2_birth_year and female_by = actor_1_birth_year.
• The condition "male actor is at least 15 years older than the female actor" means:

Age_Male >= Age_Female + 15
(release_year - male_by) >= (release_year - female_by) + 15
-male_by >= -female_by + 15
female_by - male_by >= 15
This means the female actor’s birth year must be at least 15 years greater than the male actor’s
birth year (i.e., the male actor was born at least 15 years earlier).

3. **Calculation**:
• Iterate through each row.
• Skip rows that are not male-female pairs.
• For male-female pairs, determine male_by and female_by.
• Apply the filter: female_by - male_by >= 15.
• If the filter condition is met, the value to be included in the average is abs(actor_1_birth_year -

actor_2_birth_year).
Let’s list the rows that meet the criteria and their corresponding absolute age differences:
| movie_id | Male Actor BY | Female Actor BY | Female BY - Male BY | Meets Condition? | Abs Age Diff (to average)|
|----------|---------------|-----------------|---------------------|------------------|--------------------------|
| M0234 | 1951 | 1967 | 16 | Yes | 16 |
| M0103 | 1927 | 1950 | 23 | Yes | 23 |
| M0263 | 1975 | 1990 | 15 | Yes | 15 |
| M0155 | 1954 | 1974 | 20 | Yes | 20 |
| M0128 | 1946 | 1967 | 21 | Yes | 21 |
| M0029 | 1927 | 1948 | 21 | Yes | 21 |
| M0067 | 1925 | 1951 | 26 | Yes | 26 |
| M0046 | 1949 | 1977 | 28 | Yes | 28 |
| M0143 | 1969 | 1989 | 20 | Yes | 20 |
| M0241 | 1976 | 1992 | 16 | Yes | 16 |
| M0159 | 1912 | 1931 | 19 | Yes | 19 (corrected) |
| M0262 | 1954 | 1969 | 15 | Yes | 15 |
| M0083 | 1899 | 1924 | 25 | Yes | 25 |
| M0223(1) | 1971 | 1988 | 17 | Yes | 17 |
| M0048 | 1901 | 1929 | 28 | Yes | 28 |
| M0024 | 1935 | 1967 | 32 | Yes | 32 |
| M0042 | 1955 | 1984 | 29 | Yes | 29 |
| M0191 | 1964 | 1982 | 18 | Yes | 18 |
| M0094 | 1927 | 1947 | 20 | Yes | 20 |
| M0176(2) | 1922 | 1941 | 19 | Yes | 19 |
| M0053 | 1942 | 1969 | 27 | Yes | 27 |
| M0020 | 1951 | 1966 | 15 | Yes | 15 |
| M0242 | 1963 | 1979 | 16 | Yes | 16 |
| M0106 | 1962 | 1985 | 23 | Yes | 23 |
| M0102 | 1967 | 1990 | 23 | Yes | 23 |
| M0217 | 1962 | 1978 | 16 | Yes | 16 (corrected) |
| M0257 | 1968 | 1983 | 15 | Yes | 15 |
| M0096 | 1955 | 1979 | 24 | Yes | 24 (corrected) |
| M0011(1) | 1942 | 1966 | 24 | Yes | 24 |
| M0031(2) | 1927 | 1957 | 30 | Yes | 30 |
| M0256 | 1943 | 1958 | 15 | Yes | 15 |
| M0192 | 1949 | 1967 | 18 | Yes | 18 (corrected) |
| M0218 | 1960 | 1977 | 17 | Yes | 17 |
| M0208 | 1953 | 1970 | 17 | Yes | 17 |
| M0085 | 1951 | 1976 | 25 | Yes | 25 |
| M0220 | 1968 | 1985 | 17 | Yes | 17 |
| M0219 | 1963 | 1980 | 17 | Yes | 17 |
| M0011(2) | 1930 | 1966 | 36 | Yes | 36 |
| M0056 | 1955 | 1982 | 27 | Yes | 27 |
| M0190 | 1942 | 1960 | 18 | Yes | 18 |
| M0013 | 1949 | 1965 | 16 | Yes | 16 |
| M0271 | 1942 | 1957 | 15 | Yes | 15 |
| M0216 | 1943 | 1960 | 17 | Yes | 17 (corrected) |
| M0080 | 1899 | 1924 | 25 | Yes | 25 |
| M0073 | 1899 | 1924 | 25 | Yes | 25 |
| M0126(2) | 1966 | 1987 | 21 | Yes | 21 |
| M0129 | 1889 | 1910 | 21 | Yes | 21 |
| M0127 | 1964 | 1985 | 21 | Yes | 21 |
| M0181 | 1971 | 1989 | 18 | Yes | 18 |
| M0182 | 1956 | 1974 | 18 | Yes | 18 |
| M0041(2) | 1937 | 1966 | 29 | Yes | 29 |
| M0168 | 1892 | 1911 | 19 | Yes | 19 |
| M0163 | 1942 | 1961 | 19 | Yes | 19 |
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There are 53 such pairs.
The sum of these absolute age differences is:
16+23+15+20+21+21+26+28+20+16+19+15+25+17+
28+32+29+18+20+19+27+15+16+23+23+16+15+24+24+30+15+18 +17+17
+25+17+17+36+27+18+16+15+17+25+25+21+21+21+18+18+29+19+19 = 1112

Average absolute age difference = 1112 / 53 = 20.981132075...
Rounding to the nearest 2 decimal places, the average is 20.98.

The answer is: 20.98
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C.2. Code Agent Baseline

Failure Case 1: Misapplied Value Derivation for Data Correction. The example below shows GPT-
4.1 using the code agent baseline on olympic-gold-winners, where -1 values are introduced in
the age column. The agent correctly identifies the invalid entries but chooses to overwrite it with
the athlete’s average age across all entries, rather than using the athlete’s age at the same Olympic
Games—which is available in other rows. This behavior suggests a lack of structural and semantic
understanding of the table, particularly in how values relate across rows and columns.

Code Agent Failure Example: GPT-4.1 — Table with Bad Values

System prompt:
{{ code_agent_system_prompt }}

User:
Begin!

Data table (stored in a pandas dataframe named ‘df‘):

OLYMPIC-GOLD-WINNERS IN Radar-T

athlete_id , sport , games , medal ,age, event ,name,sex,bmi,city
17, Gymnastics ,1948 Summer , Bronze ,28, Gymnastics Men's Individual All - Around , Paavo Johannes Aaltonen

,M,20.9, London
17, Gymnastics ,1948 Summer ,Gold,28, Gymnastics Men's Team All - Around , Paavo Johannes Aaltonen ,M,20.9,

London
17, Gymnastics ,1948 Summer ,Gold,28, Gymnastics Men's Horse Vault , Paavo Johannes Aaltonen ,M,20.9,

London
17, Gymnastics ,1948 Summer ,Gold,28, Gymnastics Men's Pommelled Horse , Paavo Johannes Aaltonen ,M,20.9,

London
20, Alpine Skiing ,1994 Winter , Silver ,22, Alpine Skiing Men's Downhill , Kjetil Andr Aamodt ,M, 27.44 ,

Lillehammer
20, Alpine Skiing ,1994 Winter , Bronze ,22, Alpine Skiing Men's Super G, Kjetil Andr Aamodt ,M, 27.44 ,

Lillehammer
20, Alpine Skiing ,1994 Winter , Silver ,22, Alpine Skiing Men's Combined , Kjetil Andr Aamodt ,M, 27.44 ,

Lillehammer
455, Gymnastics ,2016 Summer , Silver ,24, Gymnastics Men's Team All - Around , Denis Mikhaylovich Ablyazin ,

M, 23.92 ,Rio de Janeiro
455, Gymnastics ,2016 Summer , Silver ,24, Gymnastics Men's Horse Vault , Denis Mikhaylovich Ablyazin ,M,

23.92 ,Rio de Janeiro
455, Gymnastics ,2016 Summer , Bronze ,24, Gymnastics Men's Rings , Denis Mikhaylovich Ablyazin ,M, 23.92 ,

Rio de Janeiro
1017, Swimming ,2012 Summer ,Gold,23, Swimming Men's 100 metres Freestyle , Nathan Ghar -Jun Adrian ,M,

25.51 , London
1017, Swimming ,2012 Summer , Silver ,23, Swimming Men's 4 x 100 metres Freestyle Relay , Nathan Ghar -Jun

Adrian ,M, 25.51 , London
1017, Swimming ,2012 Summer ,Gold, -1, Swimming Men's 4 x 100 metres Medley Relay , Nathan Ghar -Jun

Adrian ,M, 25.51 , London
1017, Swimming ,2016 Summer , Bronze ,27, Swimming Men's 50 metres Freestyle , Nathan Ghar -Jun Adrian ,M,

25.51 ,Rio de Janeiro
1017, Swimming ,2016 Summer , Bronze ,27, Swimming Men's 100 metres Freestyle , Nathan Ghar -Jun Adrian ,M,

25.51 ,Rio de Janeiro
1017, Swimming ,2016 Summer ,Gold,27, Swimming Men's 4 x 100 metres Freestyle Relay , Nathan Ghar -Jun

Adrian ,M, 25.51 ,Rio de Janeiro
1017, Swimming ,2016 Summer ,Gold,27, Swimming Men's 4 x 100 metres Medley Relay , Nathan Ghar -Jun

Adrian ,M, 25.51 ,Rio de Janeiro
1639, Biathlon ,2006 Winter , Bronze ,29, Biathlon Women 's 10 kilometres Pursuit , Albina Khamitovna

Akhatova ,F, 21.48 , Torino
1639, Biathlon ,2006 Winter , Bronze ,29, Biathlon Women 's 15 kilometres , Albina Khamitovna Akhatova ,F,

21.48 , Torino
1639, Biathlon ,2006 Winter ,Gold,29, Biathlon Women 's 4 x 6 kilometres Relay , Albina Khamitovna

Akhatova ,F, 21.48 , Torino
3281, Gymnastics ,1996 Summer , Bronze ,16, Gymnastics Women 's Individual All - Around , Simona Amnar (-Tabr

),F, 17.63 , Atlanta
...

All cells in the df are object data type, regardless of their appearance.
Question:

The dataset contains medal winners for the Olympics where each row represents a medal winner
for an event. What is the average age of the gold medal winners across all gold medal-winning
performances? Return your answer rounded to two decimal places.
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Assistant:
DISCUSSION
To answer the question, we need to compute the average age of all gold medal-winning
performances. Let’s proceed step by step:

1. Filter the dataframe to include only rows where the medal column is Gold.
2. Address data quality issues in the age column:

• Missing data: Check for empty or null entries.
• Bad values: Look for placeholder or clearly erroneous values (e.g., -1).
• Outliers: For Olympic athletes, plausible ages are roughly between 10 and 60. We’ll flag

anything outside this range.
• Inconsistent formatting: Since all columns are object type, ensure age is converted to

numeric.
3. Attempt to recover or correct flawed data:

• For -1 or other bad values, if the same athlete has other gold medals with plausible ages,
we can impute the missing value with the mean age for that athlete’s other gold medals.
If not, we discard the row.

• For outliers, if the value is implausible and cannot be corrected, discard the row.
4. Calculate the average age of the cleaned gold medal-winning performances, rounding to two

decimal places.

Let’s start by filtering for gold medal winners and inspecting the age column for issues.
```yaml
command : " python "
kwargs :

code: |-
# Filter for gold medal winners
gold_df = df[df[' medal '].str. strip ().str. lower () == 'gold'].copy ()
# Convert 'age' to numeric , coerce errors to NaN
gold_df ['age'] = pd. to_numeric ( gold_df ['age'], errors =' coerce ')
# Check for missing , -1, or implausible ages
gold_df [' age_invalid '] = (

gold_df ['age']. isnull () |
( gold_df ['age'] == -1) |
( gold_df ['age'] < 10) |
( gold_df ['age'] > 60)

)
# Show rows with invalid ages
gold_df [ gold_df [' age_invalid ']]

```

User:
Observation:

athlete_id sport ... city age_invalid
12 1017 Swimming ... London True
104 11943 Cross Country Skiing ... Vancouver True
121 12086 Athletics ... London True
[3 rows x 11 columns ]

Assistant:
DISCUSSION
We have identified three gold medal-winning performances with invalid ages (all with age == -1):

• athlete_id 1017 (Nathan Ghar-Jun Adrian, Swimming, 2012 Summer, London)
• athlete_id 11943 (Marit Bjørgen, Cross Country Skiing, 2010 Winter, Vancouver)
• athlete_id 12086 (Yohan Blake, Athletics, 2012 Summer, London)
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Our next step is to attempt to impute these missing ages. The best approach is to check if these
athletes have other gold medal-winning performances in the dataset with valid ages. If so, we will
impute the missing value with the mean of their other valid gold medal-winning ages. If not, we will
discard the row.
Let’s proceed to:
1. For each of these athlete_ids, check if they have other gold medal-winning performances with

valid ages.
2. If so, impute the missing age with the mean of their valid gold medal-winning ages.
3. If not, discard the row.
4. After imputation, remove any remaining rows with invalid ages.
5. Calculate the average age of all gold medal-winning performances, rounded to two decimal

places.

```yaml
command : " python "
kwargs :

code: |-
# Function to impute missing age for a given athlete_id
def impute_age (row, gold_df ):

if row[' age_invalid ']:
# Find other gold medals for this athlete with valid ages
valid_ages = gold_df [

( gold_df [' athlete_id '] == row[' athlete_id ']) &
(~ gold_df [' age_invalid '])

]['age']
if not valid_ages . empty :

return valid_ages .mean ()
else :

return None
else :

return row['age']

# Impute missing / invalid ages
gold_df [' age_imputed '] = gold_df . apply ( lambda row: impute_age (row,

gold_df ), axis =1)
# Remove rows where age_imputed is still missing or invalid after

imputation
gold_df_clean = gold_df [

( gold_df [' age_imputed ']. notnull ()) &
( gold_df [' age_imputed '] >= 10) &
( gold_df [' age_imputed '] <= 60)

].copy ()
# Calculate the average age, rounded to two decimal places
avg_age = round ( gold_df_clean [' age_imputed '].mean (), 2)
avg_age

```

User:
Observation:
24.47

Assistant:
DISCUSSION
We have now completed the data cleaning and imputation process for the gold medal-winning
performances. Specifically, we:

• Filtered for gold medal winners.
• Identified and addressed invalid ages (such as -1) by imputing with the mean of other valid

gold medal-winning ages for the same athlete, when available.
• Discarded any rows where imputation was not possible or the age remained implausible.
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• Calculated the average age of all cleaned gold medal-winning performances.

The final computed average age, rounded to two decimal places, is 24.47.
```yaml
command : "done"
kwargs :

answer : " 24.47 "
```
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Failure Case 2: Overgeneralized and Templated Approach. This example demonstrates Gemini
2.5 Pro, using the code agent baseline, on pet-respiratory-motion with the clean data table.
The model applies an over-corrective strategy, defaulting to outlier removal using the IQR method.
However, when examining the actual changes in motion between data points (Motion_x, Motion_y,
Motion_z columns), there are no extreme or unreasonable values that would warrant such filtering.
This highlights a case where the model relies on a templated or overly general cleaning approach,
rather than adapting to the specific characteristics of the data.

Code Agent Failure Example: Gemini 2.5 Pro — Clean Table

System prompt:
{{ code_agent_system_prompt }}

User:
Begin!

Data table (stored in a pandas dataframe named ‘df‘):

PET-RESPIRATORY-MOTION IN Radar-T

A12, Time_sec , Motion_x , Motion_y , Motion_z ,A11,A43,A22,A42,A24
0.0188 , 0.013 ,0.0,0.0,0.0, 0.9992 ,0, 0.9991 ,0, 11.7874
0.0185 , 0.044 , -0.0699, 0.0078 , 0.0033 , 0.9993 ,0, 0.9991 ,0, 12.1105
0.0193 ,0.06, -0.0683, 0.047 , 0.0052 , 0.9992 ,0, 0.9991 ,0, 11.9911
0.0201 , 0.091 , -0.0628, 0.1198 , -0.0264, 0.9992 ,0, 0.999 ,0, 12.1117
0.0205 , 0.122 , -0.0428, 0.1847 , -0.0658, 0.9992 ,0, 0.9991 ,0, 12.0479
0.0217 , 0.138 , 0.0176 , 0.3018 , -0.137, 0.9991 ,0, 0.9991 ,0, 11.9028
0.0217 , 0.169 , 0.0377 , 0.3292 , -0.1483, 0.9991 ,0, 0.9991 ,0, 11.8681
0.0215 , 0.185 , 0.0482 , 0.3009 , -0.1413, 0.999 ,0, 0.9991 ,0, 11.8373
0.021 , 0.295 , 0.1562 , 0.1068 , -0.1123, 0.9991 ,0, 0.9991 ,0, 11.7981
0.0186 , 0.311 , 0.3803 , 0.0003 , -0.1769, 0.9991 ,0, 0.9991 ,0, 11.9892
0.018 , 0.342 , 0.6344 , -0.1374, -0.2309, 0.9991 ,0, 0.9991 ,0, 11.9973
0.0173 , 0.373 , 0.868 , -0.1636, -0.2828, 0.9991 ,0, 0.9991 ,0, 11.7647
0.0189 , 0.389 , 1.1281 , -0.1373, -0.3926, 0.9989 ,0, 0.9991 ,0, 11.5039
0.0187 ,0.42, 1.3006 , -0.1201, -0.4868, 0.9989 ,0, 0.9991 ,0, 11.3982
0.018 , 0.436 , 1.4664 , -0.1733, -0.5155, 0.9988 ,0, 0.9992 ,0, 11.2923
0.0163 , 0.467 , 1.5917 , -0.2696, -0.5337, 0.9988 ,0, 0.9992 ,0, 11.2381
0.0159 , 0.498 , 1.7078 , -0.3242, -0.5581, 0.9988 ,0, 0.9992 ,0, 11.1765
0.0133 , 0.592 , 1.9935 , -0.409, -0.6314, 0.9988 ,0, 0.9992 ,0, 11.1342
0.0159 , 0.623 , 2.4058 , -0.44, -0.78, 0.9986 ,0, 0.9992 ,0, 11.0308
0.015 , 0.639 , 2.6704 , -0.5323, -0.8534, 0.9985 ,0, 0.9992 ,0, 11.0058
...

All cells in the df are object data type, regardless of their appearance.
Question:

The dataset represents the motion of an object, with its position recorded at each timestamp.
Calculate the magnitude of the velocity between each pair of consecutive timestamps, and return
the average of these velocity magnitudes, rounded to three decimal points.

Assistant:
DISCUSSION
The problem asks us to calculate the average magnitude of velocity between consecutive timestamps
from the given motion data. The result should be rounded to three decimal points. I need to
carefully address potential data issues like missing data, bad values, outliers, inconsistent
formatting, and inconsistent logic.
Here’s a step-by-step plan:

1. **Initial Data Loading and Inspection**:
• The data is provided in a pandas DataFrame named df.
• All columns are initially of object type. They need to be converted to numeric types.

2. **Data Cleaning**:
• **Convert to Numeric**: Convert all columns to numeric types. Values that cannot be
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converted will become NaN. I will use pd.to_numeric(errors=’coerce’).
• **Missing Data**: Identify rows with NaN values in crucial columns (Time_sec,

Motion_x, Motion_y, Motion_z). These rows are irrecoverable for velocity calculation and
will be dropped using df.dropna().

• **Bad Values**: Non-numeric strings will be handled by to_numeric(errors=’coerce’).
Other bad values like 9999 are not explicitly filtered, assuming they parse and are caught
by outlier detection.

• **Inconsistent Formatting**: pd.to_numeric handles various numeric formats. This is
considered handled.

• **Inconsistent Logic**:
– Time_sec must be strictly increasing. The DataFrame will be sorted by Time_sec.
– Duplicate Time_sec values are removed using

df.drop_duplicates(subset=[’Time_sec’], keep=’first’).
• After these cleaning steps, if fewer than two data points remain, velocity calculation is

not possible and the result is "NaN".
3. **Velocity Calculation**:

• Sort data by Time_sec.
• Compute differences: delta_t, delta_x, delta_y, delta_z.
• Compute velocity components: vx = delta_x / delta_t, etc.
• Compute magnitude: velocity_magnitude = sqrt(vx^2 + vy^2 + vz^2).

4. **Outlier Handling**:
• Use IQR method to detect outliers in velocity_magnitude.
• Compute average only from non-outlier values.
• If no values remain after outlier removal, fall back to using all valid velocities.
• If no valid values at all, return "NaN".

5. **Calculate Average and Format**:
• Compute the mean (ignoring NaNs).
• Format result to 3 decimal places using f"average:.3f".

I will use ‘numpy‘ for ‘np.nan‘ and mathematical operations if needed, though pandas handles most
of this. ‘pandas‘ is pre-imported as ‘pd‘.
```yaml
command : " python "
kwargs :

code: |-
import numpy as np

# Store original number of rows for context ( optional , not part of final
answer )

# original_row_count = len(df)
# rows_dropped_total = 0

# 1. Convert all columns to numeric
for col in df. columns :

df[col] = pd. to_numeric (df[col], errors =' coerce ')

# 2. Handle missing data (NaNs) from coercion or original
crucial_cols = [' Time_sec ', ' Motion_x ', ' Motion_y ', ' Motion_z ']
# rows_before_nan_drop = len(df)
df. dropna ( subset = crucial_cols , inplace =True)
# rows_dropped = rows_before_nan_drop - len(df)
# rows_dropped_total += rows_dropped
# print (f" Dropped { rows_dropped } rows due to NaNs in crucial columns .")

# For debugging

# 3. Handle inconsistent logic for Time_sec
# 3a. Sort by Time_sec
df. sort_values (by=' Time_sec ', inplace =True)
df. reset_index (drop=True, inplace =True) # Reset index after sorting
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# 3b. Handle duplicate timestamps
# rows_before_dup_drop = len(df)
df. drop_duplicates ( subset =[' Time_sec '], keep=' first ', inplace =True)
# rows_dropped = rows_before_dup_drop - len(df)
# rows_dropped_total += rows_dropped
# print (f" Dropped { rows_dropped } rows due to duplicate ' Time_sec ' values

.") # For debugging

avg_velocity_magnitude_str = "NaN" # Default if not enough data

if len(df) < 2:
# print ("Not enough data points after cleaning to calculate velocity

.") # For debugging
pass # avg_velocity_magnitude_str remains "NaN"

else :
# 4. Calculate deltas
delta_t = df[' Time_sec '].diff ()
delta_x = df[' Motion_x '].diff ()
delta_y = df[' Motion_y '].diff ()
delta_z = df[' Motion_z '].diff ()

# 5. Calculate velocity components
vx = delta_x / delta_t
vy = delta_y / delta_t
vz = delta_z / delta_t

# 6. Calculate velocity magnitude
# NaNs from .diff () or division by zero (if any delta_t was 0,

though unlikely after drop_duplicates )
# will propagate .
df[' velocity_magnitude '] = (vx **2 + vy **2 + vz **2) **0.5

# 7. Handle outliers in calculated velocity magnitudes
valid_velocities = df[' velocity_magnitude ']. dropna ()

if not valid_velocities . empty :
Q1 = valid_velocities . quantile (0.25)
Q3 = valid_velocities . quantile (0.75)
IQR = Q3 - Q1

avg_velocity_magnitude = np.nan # Default if all further steps
fail

# Only apply outlier filtering if IQR is a valid number (not NaN
, e.g. if valid_velocities has <2 points )

# And if IQR is not zero (to avoid issues if all values up to Q3
are identical , but larger values exist )

# However , standard IQR definition handles IQR =0 correctly by
setting tight bounds .

if pd. notna (IQR):
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

velocities_no_outliers = valid_velocities [
( valid_velocities >= lower_bound ) & ( valid_velocities <=

upper_bound )
]

# If outlier removal process resulted in an empty series ,
but there were valid velocities initially ,

# it might be due to extreme skewness or very few data
points . Fallback to mean of non - filtered valid
velocities .

if velocities_no_outliers . empty and not valid_velocities .
empty :
avg_velocity_magnitude = valid_velocities .mean ()

else :
# This covers :
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# - velocities_no_outliers is not empty ( usual case for
outlier filtering )

# - velocities_no_outliers is empty AND valid_velocities
was also empty ( results in NaN)

avg_velocity_magnitude = velocities_no_outliers .mean ()
else :

# IQR is NaN (e.g., valid_velocities has too few points ). No
outlier removal possible .

avg_velocity_magnitude = valid_velocities .mean ()

else : # valid_velocities series is empty (e.g., df had 0 or 1 row
after .diff ())
avg_velocity_magnitude = np.nan

# 8. Format the result
if pd. notna ( avg_velocity_magnitude ):

avg_velocity_magnitude_str = f"{ avg_velocity_magnitude :.3f}"
else :

avg_velocity_magnitude_str = "NaN"

# Ensure the result string is the last expression for implicit output
avg_velocity_magnitude_str

```

User:
Observation:
3.694

Assistant:
DISCUSSION
The Python code was executed, and the output "3.694" is the calculated average velocity magnitude,
rounded to three decimal places, after performing data cleaning, velocity calculations, and outlier
removal from the velocity magnitudes.
The steps taken by the Python script were:

1. **Numeric Conversion**: All columns were converted to numeric types, with errors coerced to
NaN.

2. **Missing Data Handling**: Rows with NaN in crucial columns (Time_sec, Motion_x,
Motion_y, Motion_z) were dropped.

3. **Data Consistency**:
• The DataFrame was sorted by Time_sec.
• Duplicate Time_sec entries were removed, keeping the first occurrence.

4. **Velocity Calculation**:
• Time and spatial differences (delta_t, delta_x, delta_y, delta_z) between consecutive

valid rows were computed.
• Velocity components (vx, vy, vz) were calculated.
• The magnitude of velocity (velocity_magnitude) was calculated for each interval.

5. **Outlier Handling**:
• Outliers in the velocity_magnitude series were identified using the IQR method (1.5 * IQR

rule).
• The average was computed from velocity magnitudes that were not outliers. A fallback to

the mean of all valid velocities was included if outlier removal resulted in an empty set.
6. **Formatting**: The final average was formatted to a string with three decimal places. If the

calculation was not possible (e.g., fewer than two data points), "NaN" would have been the
result.

The observation "3.694" indicates that these steps were successfully completed and yielded a
numerical result. I will now provide this result using the done command.
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```yaml
command : "done"
kwargs :

answer : " 3.694 "
```
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Failure Case 3: Reasoning Model Recalculates their Own Answer. The example below example
demonstrates o4-mini (high) in the code agent baseline, on the nurses-state-employees task on
a table containing missing data. The model executes code reasonably well to compute the correct
answer. However, when it comes time to return the result, the model—based on its final output and
the large number of thinking tokens—recalculates the answer via thinking tokens and produces an
incorrect value.

This highlights a disconnect between the model’s code execution and direct token reasoning, sug-
gesting that orchestration between these components remains an open challenge and an opportunity
for future improvement.

Code Agent Failure Example: o4-mini (high) — Table with Missing Data

System prompt:
{{ code_agent_system_prompt }}

User:
Begin!

Data table (stored in a pandas dataframe named ‘df‘):

NURSES-STATE-EMPLOYEES IN Radar-T

State ,Year, Hourly Wage Median , Hourly Wage Avg, Annual Salary Median , Annual Salary Avg, Total
Employed Registered Nurses , Total_Employed_Healthcare_National_Aggregate ,
Total_Employed_Healthcare_State_Aggregate , Total Employed ( National ) _Aggregate

Arkansas ,2000,18.0,18.6, 37481.6 , 38771.2 , 17610.0 , 6082230.0 , 56440.0 , 130849730.0
Georgia ,2019,32.9,33.5, 68411.2 , 69596.8 , 75430.0 , 8727310.0 , 245700.0 , 147838700.0
Arizona ,2003,23.9,24.3, 49670.4 , 50627.2 , 32200.0 , 6215910.0 , 94470.0 , 128623200.0
Rhode Island ,1998,22.0,22.6, 45656.0 , 47070.4 , 9770.0 , 5854360.0 , 24880.0 , 124143490.0
Georgia ,2000,20.5,21.4, 42598.4 , 44470.4 , 49370.0 , 6082230.0 , 153230.0 , 130849730.0
Massachusetts ,2009,37.4,39.3, 77771.2 , 81785.6 , 83060.0 , 7250140.0 , 224490.0 , 131713800.0
Minnesota ,2012,34.0,34.0, 70636.8 , 70782.4 , 54940.0 , 7698450.0 , 153280.0 , 131331400.0
New Hampshire ,2003,22.0,22.7, 45760.0 , 47299.2 , 11840.0 , 6215910.0 , 29490.0 , 128623200.0
Texas ,2014,32.5,33.0, 67579.2 , 68598.4 , 190170.0 , 7907200.0 , 584740.0 , 136129200.0
Puerto Rico,2012,14.7,15.8, 30638.4 , 32926.4 , 17550.0 , 7698450.0 , 45640.0 , 131331400.0
Idaho ,1998,18.5,18.9, 38459.2 , 39291.2 , 7430.0 , 5854360.0 , 21970.0 , 124143490.0
New Jersey ,2014,37.5,37.7, 78041.6 , 78332.8 , 76790.0 , 7907200.0 , 216630.0 , 136129200.0

, ,29.2,30.0, 60798.4 , 62441.6 , 30370.0 , 8727310.0 , 86100.0 , 147838700.0
Delaware ,2002,25.6,25.9, 53289.6 , 53872.0 , 6470.0 , 6226540.0 , 18760.0 , 128588870.0
Colorado ,2012,32.2,32.7, 67017.6 , 67932.8 , 41380.0 , 7698450.0 , 117610.0 , 131331400.0
Idaho ,2007,25.2,25.9, 52520.0 , 53955.2 , 9600.0 , 6923830.0 , 28760.0 , 135474020.0
Alabama ,2018,27.8,28.6, 57928.0 , 59467.2 , 49490.0 , 8701110.0 , 131000.0 , 145671780.0
Louisiana ,2014,28.3,29.0, 58843.2 , 60236.8 , 40460.0 , 7907200.0 , 123270.0 , 136129200.0
Tennessee ,2019,29.4,30.1, 61193.6 , 62566.4 , 63330.0 , 8727310.0 , 199730.0 , 147838700.0
Wisconsin ,2008,29.3,29.9, 60881.6 , 62150.4 , 51700.0 , 7125040.0 , 147920.0 , 136288000.0
Michigan ,2013,31.3,31.6, 65041.6 , 65811.2 , 91840.0 , 7807260.0 , 262450.0 , 133614660.0
Louisiana ,2004,22.9,23.5, 47694.4 , 48817.6 , 39140.0 , 6405560.0 , 107740.0 , 129199200.0
Arkansas ,2018,28.7,29.2, 59654.4 , 60777.6 , 25380.0 , 8701110.0 , 80890.0 , 145671780.0
Minnesota ,2007,31.9,32.5, 66268.8 , 67516.8 , 52690.0 , 6923830.0 , 147650.0 , 135474020.0
Nevada ,1999,22.6,23.0, 46966.4 , 47944.0 , 9810.0 , 6039520.0 , 31970.0 , 128234630.0
Washington ,2013,36.3,36.7, 75504.0 , 76419.2 , 53060.0 , 7807260.0 , 151530.0 , 133614660.0
Montana ,2005,23.0,23.3, 47819.2 , 48464.0 , 7490.0 , 6595170.0 , 21200.0 , 131432960.0
Virginia ,2013,30.2,30.4, 62753.6 , 63148.8 , 60120.0 , 7807260.0 , 190370.0 , 133614660.0
Vermont ,2016,31.4,32.6, 65228.8 , 67787.2 , 5850.0 , 8372570.0 , 18530.0 , 141382280.0
Rhode Island ,2011,34.5,35.0, 71739.2 , 72716.8 , 12340.0 , 7562850.0 , 30920.0 , 129312400.0
Hawaii ,2002,27.9,27.6, 57969.6 , 57304.0 , 7680.0 , 6226540.0 , 22400.0 , 128588870.0
District of Columbia ,2003,27.0,27.0, 56118.4 , 56201.6 , 7600.0 , 6215910.0 , 26310.0 , 128623200.0
Iowa,2013,25.3,25.7, 52624.0 , 53518.4 , 32100.0 , 7807260.0 , 83660.0 , 133614660.0
North Dakota ,2009,25.6,27.0, 53185.6 , 56118.4 , 6260.0 , 7250140.0 , 19740.0 , 131713800.0
New York,2010,,35.6,, 74006.4 , 169710.0 , 7394880.0 , 473700.0 , 128150010.0
Alaska ,1999, 23.02 , 23.29 , 47881.6 , 48443.2 , 4190.0 , 6039520.0 , 9660.0 , 128234630.0
Indiana ,2008, 26.91 , 27.48 , 55972.8 , 57158.4 , 56500.0 , 7125040.0 , 162990.0 , 136288000.0
Utah,2013, 28.38 , 28.89 , 59030.4 , 60091.2 , 18550.0 , 7807260.0 , 59960.0 , 133614660.0
...

All cells in the df are object data type, regardless of their appearance.
Question:
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Using the latest available data for each state in the given table and for the states with a median
hourly wage greater than $24, what is the average number of employed registered nurses in the
state? Return the answer rounded to the nearest integer using bankers rounding (round half to
even). Examples: round(2.5) 2, round(3.5) 4, round(4.3) 4, round(4.7) 5.

Assistant:
DISCUSSION
We need to compute each vehicle’s age at the time of its violation within 2014–2024, then average
across all valid records. Step by step:

1. Clean the model year:
• Remove stray spaces from Year (e.g. "20 07"→ "2007").
• Convert to numeric, coercing unparsable entries to NaN.

2. Clean and parse the stop date:
• Split off any trailing ... annotations.
• Strip leading hyphens/spaces (e.g. "- 08/27/2019"→ "08/27/2019").
• Use pd.to_datetime with errors=’coerce’ to get actual dates.

3. Extract the violation year, and restrict to 2014–2024 inclusive.
4. Compute Age = ViolationYear - ModelYear, and drop rows where year or date is missing or

where age is negative.
5. Finally, take the mean of Age and round to two decimal places.

```yaml
command : " python "
kwargs :

code: |-
# 1. Clean model year
df[' Year_clean '] = df['Year'].str. replace (' ', '', regex = False )
df[' Year_clean '] = pd. to_numeric (df[' Year_clean '], errors =' coerce ')

# 2. Clean and parse stop date
date_strings = (

df['Date Of Stop']
.str. split ('~').str[0] # drop trailing "~..."
.str. lstrip ('- ').str. strip () # remove leading hyphens / spaces

)
df[' Date_clean '] = pd. to_datetime ( date_strings , infer_datetime_format =

True, errors =' coerce ')

# 3. Extract year and filter 2014 2024
df[' ViolationYear '] = df[' Date_clean '].dt.year
df_period = df[df[' ViolationYear ']. between (2014 , 2024) ].copy ()

# 4. Compute age and drop invalid / negative
df_period ['Age'] = df_period [' ViolationYear '] - df_period [' Year_clean ']
df_valid = df_period . dropna ( subset =[' Year_clean ',' Date_clean ','Age'])
df_valid = df_valid [ df_valid ['Age'] >= 0]

# 5. Compute and display average age
avg_age = round ( df_valid ['Age'].mean (), 2)
avg_age
round ( avg_rn )

```

User:
Observation:
52786
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Assistant:
DISCUSSION
I recalculated the latest record for each state, filtered to those with median hourly wage > 24,
summed their registered-nurse counts (1,914,300) over 37 states, giving a mean of 51,737.8378.
Rounding to the nearest integer with bankers rounding yields 51,738.
```yaml
command : done
kwargs :

answer : " 51738 "
```
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Success Case: Model Implements Correct Code to Handle Inconsistent Formatting. The follow-
ing successful example shows DeepSeek-V3 on movies-roi for the table with inconsistent formatting
(i.e., some cell values have dollars or $ added to them for the intgross and budget_2013 columns).
The model implements the correct logic to extract the numbers from these cells and performs the
write calculations using code.

Code Agent Success Example: DeepSeek-V3 — Table with Inconsistent Formatting

System prompt:
{{ code_agent_system_prompt }}

User:
Begin!

Data table (stored in a pandas dataframe named ‘df‘):

MOVIES-ROI IN Radar-T

title , response , intgross , intgross_2013 , budget , budget_2013 ,year, domgross_2013 , released , clean_test
Nacho Libre ,True, 99296462.0 , 114766488.0 , 32000000 , 36985483 ,2006, 92692547.0 ,16 Jun 2006, nowomen
Harry Potter and the Deathly Hallows : Part 2,True, 1328111219.0 , 1375512553.0 , 125000000 , 129461348 ,

2011, 394609809.0 ,15 Jul 2011, notalk
Crossroads ,True, 57000000.0 , 73825215.0 , 12000000 , 15542151 ,2002, 48165989.0 ,15 Feb 2002,ok
High Heels and Low Lifes ,True, 226792.0 , 298423.0 , 10000000 , 13158460 ,2001, 298423.0 ,20 Jul 2001,ok
American Psycho ,True, 28674417.0 , 38793859.0 , 8000000 ,"$10,823,267 2013 adjusted dollars ",2000,

20388715.0 ,14 Apr 2000, notalk
Home on the Range ,True, 76482461.0 , 94317626.0 , 110000000 , 135651216 ,2004, 61692142.0 ,02 Apr 2004,ok
Far from Heaven ,True, 29027914.0 , 37596351.0 , 13500000 , 17484919 ,2002, 20595744.0 ,12 Mar 2003,ok
White House Down,True, 205440387.0 , 205440387.0 , 150000000 , 150000000 ,2013, 73103784.0 ,28 Jun 2013,men
Alice in Wonderland ,True, 1024391110.0 , 1094287202.0 , 200000000 , 213646368 ,2010, 356993585.0 ,05 Mar

2010,ok
Liar Liar,True, 302710615.0 , 439305185.0 , 45000000 , 65305716 ,1997, 263270001.0 ,21 Mar 1997, notalk
Kick -Ass,True, 97527535.0 , 104182018.0 , 28000000 , 29910492 ,2010, 51351297.0 ,16 Apr 2010, notalk
Crank ,True, 43924923.0 , 50768266.0 , 12000000 , 13869556 ,2006, 32175530.0 ,01 Sep 2006, nowomen
The Matrix Revolutions ,True, 424259759.0 , 537149747.0 , 110000000 , 139269565 ,2003, 176314964.0 ,05 Nov

2003,ok
Akeelah and the Bee,True, 18959424.0 , 21913233.0 , 8000000 , 9246371 ,2006, 21784947.0 ,28 Apr 2006,ok
The Losers ,True, 26714018.0 , 28536765.0 , 25000000 , 26705796 ,2010, 25201119.0 ,23 Apr 2010, notalk
Vanilla Sky,True, 202726605.0 , 266756984.0 , 70000000 , 92109217 ,2001, 132393654.0 ,14 Dec 2001, notalk
Super 8,True, 260095987.0 , 269379017.0 , 50000000 , 51784539 ,2011, 131537058.0 ,10 Jun 2011,ok
Twelve Monkeys ,True, 168841459.0 , 258121354.0 , 29000000 , 44334604 ,1995, 87356689.0 ,05 Jan 1996, notalk
Bug,True, 7006708.0 , 8098328.0 , 4000000 , 4623185 ,2006, 8098328.0 ,25 May 2007,ok
Hard Candy ,True, 8267066.0 , 9862884.0 , 950000 , 1133381 ,2005, 1222429.0 ,12 May 2006,ok
Ted,True, 549444574.0 dollars , 557487654.0 , 50000000 , 50731928 ,2012, 221866693.0 ,29 Jun 2012,men
Straw Dogs,True, 11253821.0 , 11655479.0 , 25000000 , 25892270 ,2011, 10692928.0 ,16 Sep 2011,ok
...

All cells in the df are object data type, regardless of their appearance.
Question:

The dataset includes budget and gross numbers as of the release year of movies as well as
normalized to 2013 dollars. What is the average ROI where ROI = (intgross - budget) / budget?
Return your answer as a float rounded to the nearest 3 decimal places.

Assistant:
DISCUSSION
Let me analyze this step by step to calculate the average ROI.

1. First, we need to identify and handle data quality issues:
• Some budget values contain text like "$10,823,267 2013 adjusted dollars" which need

cleaning.
• Some intgross values have "dollars" appended (e.g. "549444574.0 dollars").
• All columns are stored as objects/strings, so we need to convert to numeric.
• We should use the non-adjusted values (budget and intgross) since ROI should be

calculated using original values.
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2. Data cleaning steps needed:
• Remove any non-numeric characters from budget and intgross columns.
• Convert cleaned strings to numeric values.
• Calculate ROI for each movie.
• Handle any missing/invalid values that may result.

3. Calculation approach:
• ROI = (intgross - budget) / budget
• We’ll calculate this for each movie, then take the average.
• Round final result to 3 decimal places.

```yaml
command : " python "
kwargs :

code: |-
import pandas as pd
import numpy as np

# Clean budget column - remove dollar signs and text
df[' budget_clean '] = df[' budget '].str. replace (r'[^\d.]', '', regex =True)
df[' budget_clean '] = pd. to_numeric (df[' budget_clean '], errors =' coerce ')

# Clean intgross column - remove ' dollars ' text
df[' intgross_clean '] = df[' intgross '].str. replace (' dollars ', '')
df[' intgross_clean '] = pd. to_numeric (df[' intgross_clean '], errors ='

coerce ')

# Calculate ROI only for rows with valid numbers
valid_rows = df[df[' budget_clean ']. notna () & df[' intgross_clean ']. notna

() & (df[' budget_clean '] > 0)]
valid_rows ['roi'] = ( valid_rows [' intgross_clean '] - valid_rows ['

budget_clean ']) / valid_rows [' budget_clean ']

# Calculate average ROI and round
avg_roi = round ( valid_rows ['roi'].mean (), 3)
avg_roi

```

User:
Observation:
2.753

Assistant:
DISCUSSION
Let me verify and refine the calculation to ensure we’re getting the most accurate average ROI.

1. Reviewing the previous result of 2.753, this seems plausible but let’s double-check:
• The ROI calculation appears correct: (gross - budget)/budget
• We’re properly handling non-numeric values and zero/negative budgets
• The cleaning process removes text annotations while preserving numeric values

2. Potential improvements:
• Verify we’re using the correct columns (original values, not 2013-adjusted)
• Ensure we’re not accidentally including any invalid rows
• Check if any extreme outliers might be skewing the average

3. Additional validation steps:
• Count how many valid rows we have after cleaning
• Check the distribution of ROI values
• Verify the calculation with a manual check on a few sample movies
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```yaml
command : " python "
kwargs :

code: |-
# Re -run cleaning to ensure consistency
df[' budget_clean '] = df[' budget '].str. replace (r'[^\d.]', '', regex =True)
df[' budget_clean '] = pd. to_numeric (df[' budget_clean '], errors =' coerce ')

df[' intgross_clean '] = df[' intgross '].str. replace (' dollars ', '')
df[' intgross_clean '] = pd. to_numeric (df[' intgross_clean '], errors ='

coerce ')

# Filter valid rows
valid = df[df[' budget_clean ']. notna () &

df[' intgross_clean ']. notna () &
(df[' budget_clean '] > 0)].copy ()

# Calculate ROI
valid ['roi'] = ( valid [' intgross_clean '] - valid [' budget_clean ']) / valid

[' budget_clean ']

# Verify stats
print (f" Valid movies : {len( valid )}/{len(df)}")
print (f"ROI stats :\n{ valid ['roi']. describe ()}")

# Recalculate average and round
round ( valid ['roi'].mean (), 3)

```

User:
Observation:
2.753

Assistant:
DISCUSSION
Let me analyze the final result and provide the conclusion.

1. After carefully cleaning and validating the data:
• We properly handled text annotations in numeric fields
• Removed non-numeric characters and converted to proper numeric types
• Filtered out invalid or missing data points
• Calculated ROI correctly as (intgross - budget)/budget

2. The verification steps confirmed:
• We’re using the correct original values (not 2013-adjusted)
• All calculations are performed on clean, valid data
• The average ROI of 2.753 is consistent across multiple runs
• This means on average, movies returned ∼2.75 times their budget

3. Final considerations:
• The result is rounded to 3 decimal places as requested
• We’ve validated the calculation methodology
• The answer is ready to be finalized

```yaml
command : "done"
kwargs :

answer : " 2.753 "
```
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D. Additional Results

Figure 9 presents additional scaling results on Radar-S for Gemma 3 27B and o4-mini. Larger
tables—measured by token count—consistently lead to poorer performance under direct prompting,
with even the strongest models struggling on 16K-token tables. Conversely, wider tables—those with
more columns and fewer rows—tend to be easier across all evaluated language models. Notably, the
performance of code agent baselines remains relatively stable across varying table sizes.

Figure 10 illustrates performance degradation on tasks where the model initially succeeded on
the clean table, across missing data, bad values, outliers, and inconsistent formatting data artifacts.
Similar to the trends observed with inconsistent logic, these artifacts cause widespread performance
declines. While the results are drawn from different subsets of tasks, there is no consistent evidence
(across models or artifact types) when assuming they can solve the clean version, that direct prompting
or code agent baselines outperform the other when handling tables with such artifacts.

Figure 11 breaks down performance on the Radar-T split by task. Although performance varies
across tasks and models, those that perform well overall generally maintain non-zero exact match
rates across most tasks. While the code agent baseline often outperforms direct prompting, this is not
always the case. For instance, Gemini 2.5 Pro performs better with direct prompting on specific tasks
such as uae-cancer-patient and traffic-violations-speeding. Finally, some tasks appear consistently
challenging (though not unsolvable), as indicated by the darker rows in the figure.
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Figure 9 | Scaling Performance on Tables with Artifacts. Exact match scores on Radar-S for
tables varying in token and column count.
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Gemini 2.5 FlashThinkingN=[22, 50]
Gemini 2.5 ProN=[41, 48] DeepSeek-R1N=[20, 48] o4-miniN=[47, 56]
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Figure 10 | Performance Drop from Clean Tables to Tables With Artifacts. Exact match scores
on Radar-T for tables with various artifact types on tasks where the model answered correctly on
the clean table (indicated by N).
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Figure 11 | Performance by Task. Exact match scores on Radar-T, averaged across all six table
artifact variants (one clean and five perturbed), for each task.
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